Advertisement

Experimental and Applied Acarology

, Volume 47, Issue 3, pp 179–190 | Cite as

Wearing a raincoat: exocrine secretions contain anti-wetting agents in the oribatid mite, Liacarus subterraneus (Acari: Oribatida)

  • Günther RaspotnigEmail author
  • Hans-Jörg Leis
Article

Abstract

Liacarus subterraneus is a large, soil-dwelling oribatid mite species that possesses a conspicuously shiny, clean and not wettable cuticular surface. The exocrine cuticular chemistry of this species was investigated by means of gas chromatography–mass spectrometry. Besides a fraction of hydrocarbons and a terpene, hexane extracts of whole mite bodies exhibited free carboxylic acids and their glycerides as main components. The compounds were arranged in three distinct extract profiles. Based on data from individual extracts, (1) the majority (more than 3/4) of specimens showed large amounts of 1,2-dioctanoyl-glycerol (and three other related esters) but no (or only traces of) free carboxylic acids. (2) In about 1/8 of extracts, free acids (mainly octanoic (caprylic) acid) and glycerides were detected. This second type of profile highly varied with respect to the relative abundance of acids and esters. (3) The third profile (in about 7% of specimens) exclusively exhibited free acids and no (or only traces of) glycerides. In addition, a few extracts exhibited no components at all. The extract compounds most likely originate from the lipid layer of the cerotegument of L. subterraneus. The cuticle of individuals that possessed extractable cerotegumental compounds (profile I, II, III) exhibited strong water repellent properties, while the cuticle of individuals that possessed no components in their extract did not. After hexane extraction, water repellent properties got lost. The distinct extract profiles detected most likely portray the stepwise generation of an anti-wetting, exocrine surface lipid layer of glycerides: If this layer is lost, fatty acids may be discharged again (profile III) and may subsequently esterify (profile II) to larger and more stable esters (diacyl-glycerols), eventually building up the “raincoat” (mainly profile I) of L. subterraneus.

Keywords

Cerotegument Chemical ecology Cuticular chemistry Lipid layer Lotus-effect Opisthonotal glands 

Notes

Acknowlegdements

This study was supported by the Austrian Science Fund (FWF), project number P18486. We are grateful to Dr. Günther Krisper (Institute of Zoology, Karl-Franzens-University Graz, Austria) for determination of Liacarus subterraneus and for critically reading the manuscript.

References

  1. Alberti G, Coons LB (1999) Mites. In: Harrison FW, Foelix RF (eds) Microscopic anatomy of invertebrates, vol. 8C. Chelicerate Arthropoda. Wiley–Liss, New York, pp 515–1265Google Scholar
  2. Alberti G, Storch V, Renner H (1981) Über den feinstrukturellen Aufbau der Milbencuticula. Zool Jb Anat Abt 105:183–236Google Scholar
  3. Alberti G, Norton RA, Adis J, Fernandez NA, Kratzmann M, Moreno A, Ribiero E, Weigmann G, Woas S (1997) Porose integumental organs of oribatid mites (Acari, Oribatida). 2. Fine structure. Zool Stuttg 146:33–114Google Scholar
  4. Attygalle AB, Wu X, Ruzicka J, Rao S, Garcia S, Herath K, Meinwald J, Maddison DR, Will KW (2004) Defensive chemicals of two species of Trachypachus Motschulski. J Chem Ecol 30:577–588. doi: 10.1023/B:JOEC.0000018630.79922.94 PubMedCrossRefGoogle Scholar
  5. Barthlott W, Neinhuis C (1997) Purity of sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8. doi: 10.1007/s004250050096 CrossRefGoogle Scholar
  6. Barthlott W, Neinhuis C (1998) Lotus-Effekt und Autolack: Die Selbstreinigungsfähigkeit mikrostrukturierter Oberflächen. Biol Unserer Zeit 28:314–321. doi: 10.1002/biuz.960280507 CrossRefGoogle Scholar
  7. Cardé RT, Millar JG (2004) Advances in insect chemical ecology. Cambridge University Press, Cambridge, p 341Google Scholar
  8. Eisner T, Meinwald J, Monro A, Ghent R (1961) Defense mechanisms of arthropods. I. The composition and function of the sray of the whipscorpion, Mastigoproctus giganteus. J Insect Physiol 6:272–298. doi: 10.1016/0022-1910(61)90054-3 CrossRefGoogle Scholar
  9. Eisner T, Eisner M, Siegler M (2005) Secret weapons. Harvard University Press, Harvard, p 372Google Scholar
  10. Evans GO (1992) Priciples of acarology. CAB International, Wallingford, p 563Google Scholar
  11. Filshie BK (1982) Fine structure of the cuticle of insects and other arthropods. In: King RC, Akai H (eds) Insect ultrastructure. Plenum Press, New York, pp 281–312Google Scholar
  12. Fortunato A, Maile R, Turillazzi S, Morgan ED, Moneti G, Jones GR, Pieraccini G (2001) Defensive role of secretion of ectal mandibular glands of the wasp Polistes dominulus. J Chem Ecol 27:569–579. doi: 10.1023/A:1010393006831 PubMedCrossRefGoogle Scholar
  13. Haupt J, Müller F (2004) New products of defense secretion in South East Asian whip scorpions (Arachnida: Uropygi: Thelyphonida). Zeitschr Naturforsch 59C:579–581Google Scholar
  14. Huwyler S, Grob K, Viscontini M (1975) The trail pheromone of the ant, Lasius fuliginosus. J Insect Physiol 21:299–304. doi: 10.1016/0022-1910(75)90025-6 PubMedCrossRefGoogle Scholar
  15. Kabara JJ (1978) Fatty acids and derivatives as antimicrobial agents. In: Kabara JJ (ed) The pharmacological effect of lipids. The American Oil Chemists Society, St Louis, pp 1–14Google Scholar
  16. Koch CL (1844) Deutschlands crustaceen, myriapoden und arachniden, 38(11), RegensburgGoogle Scholar
  17. Lockey KH (1988) Lipids of the insect cuticle: origin, composition, and function. Comp Biochem Physiol 89B:595–645Google Scholar
  18. Löfstedt C, Hansson BS, Petersson E, Valeur P, Richards A (1994) Pheromonal secretions from glands on the 5th abdominal sternite of hydropsychid and rhyacophilid caddisflies. J Chem Ecol 20:153–170. doi: 10.1007/BF02065998 CrossRefGoogle Scholar
  19. Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future research. Ecography 23:374–383. doi: 10.1034/j.1600-0587.2000.d01-1647.x CrossRefGoogle Scholar
  20. Matischek T, Stabentheiner E, Raspotnig G, Krisper G (2004) Elementaranalysen der Cuticula und des Ceroteguments bei Damaeus onustus (C. L. Koch, 1844) und Eupelops torulosus (C. L. Koch, 1836) (Acari: Oribatida). Abh Ber Naturkundemus Gorlitz 76:25–31Google Scholar
  21. Messer C, Dettner K, Schulz S, Francke W (1999) Phenolic compounds in Neanura muscorum (Collembola, Neanuridae) and the role of 1, 3-dimethoxybenzene as an alarm substance. Pedobiologia (Jena) 43:174–182Google Scholar
  22. Nair MKM, Vasudevan P, Hoagland T, Venkitanarayanan K (2004) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes in milk by caprylic acid and monocaprylin. Food Microbiol 21:611–616. doi: 10.1016/j.fm.2004.01.003 CrossRefGoogle Scholar
  23. Nair MKM, Joy J, Vasudevan P, Hinckley L, Hoagland TA, Venkitanarayanan KS (2005) Antibacterial effect of caprylic acid and monocaprylin on major bacterial mastitis pathogens. J Dairy Sci 88:3488–3495PubMedGoogle Scholar
  24. Neinhuis C, Barthlott W (1997) Characterisation and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot (Lond) 79:667–677. doi: 10.1006/anbo.1997.0400 CrossRefGoogle Scholar
  25. Raspotnig G (2006a) Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: Oribatida). Exp Appl Acarol 39:177–194. doi: 10.1007/s10493-006-9015-4 PubMedCrossRefGoogle Scholar
  26. Raspotnig G (2006b) Characterisation of monophyletic oribatid groups by oil gland chemistry—a novel systematic approach in Oribatida (Acari). Abh Ber Naturkundemus Gorlitz 78:31–46Google Scholar
  27. Raspotnig G, Krisper G (1998) Fatty acids as cuticular surface components in oribatid mites (Acari: Oribatida). In: Ebermann E (ed) Arthropod biology: contributions to morphology, ecology and systematics. Biosys Ecol Ser, 14, pp 215–243Google Scholar
  28. Raspotnig G, Krisper G, Fauler G, Leis HJ (2008) Distinctive cuticular hydrocarbon profiles in oribatid mites (Acari: Oribatida). Ann Zool 58:445–452Google Scholar
  29. Sakata T, Shimano S, Kuwahara Y (2003) Chemical ecology of oribatid mites. III. Chemical composition of oil gland exudates from two oribatid mites, Trhypochthoniellus sp. and Trhypochthonius japonicus (Acari: Trhypochthoniidae). Exp Appl Acarol 29:279–291. doi: 10.1023/A:1025882214375 PubMedCrossRefGoogle Scholar
  30. Saporito R, Donnelly MA, Norton RA, Garraffo HM, Spande TF, Daly JW (2007) Oribatid mites as a major dietary source for alkaloids in poison frogs. Proc Natl Acad Sci USA 104:8885–8890. doi: 10.1073/pnas.0702851104 PubMedCrossRefGoogle Scholar
  31. Schatz H (2002) Die Oribatidenliteratur und die beschriebenen Oribatidenarten (1758–2001)—eine Analyse. Abh Ber Naturkundemus Gorlitz 74:37–45Google Scholar
  32. Schmidt JO, Dani FR, Jones GR, Morgan DE (2000) Chemistry, ontogeny, and role of pygidial gland secretions of the vinegaroon Mastigoproctus giganteus (Arachnida: Uropygi). J Insect Physiol 46:443–450. doi: 10.1016/S0022-1910(99)00130-4 PubMedCrossRefGoogle Scholar
  33. Shimano S, Sakata T, Mizutani Y, Kuwahara Y, Aoki J (2002) Geranial: the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J Chem Ecol 28:1831–1837. doi: 10.1023/A:1020517319363 PubMedCrossRefGoogle Scholar
  34. Smrz J (2006) Microhabitat selection in the simple oribatid community dwelling in epilithic moss cover (Acari: Oribatida). Naturwissenschaften 93:570–576. doi: 10.1007/s00114-006-0141-y PubMedCrossRefGoogle Scholar
  35. Suzuki T, Haga K, Tsutsumi T, Matsuyama S (2004) Analysis of anal secretions of phlaeothripine thrips. J Chem Ecol 30:409–423. doi: 10.1023/B:JOEC.0000017985.89897.c3 PubMedCrossRefGoogle Scholar
  36. Takada W, Sakata T, Stimano S, Enami Y, Mori N, Nishida R, Kuwahara Y (2005) Scheloribatid mites as the source of pumiliotoxins in dendrobatid frogs. J Chem Ecol 31:2403–2415. doi: 10.1007/s10886-005-7109-9 PubMedCrossRefGoogle Scholar
  37. Tschinkel WR (1975) Comparative studies of the chemical defensive system of tenebrionid beetles. Chemistry of the secretions. J Insect Physiol 21:753–783. doi: 10.1016/0022-1910(75)90008-6 CrossRefGoogle Scholar
  38. Vitzthum H (1940–43) Acarina. In: Bronn’s Klassen und Ordnungen des Tierreichs 5/4/5. Akademische Verlagsgesellschaft, Leipzig, pp 1–1011Google Scholar
  39. Wagner T, Neinhuis C, Barthlott W (1996) Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zool 77:213–225CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of ZoologyKarl-Franzens-UniversityGrazAustria
  2. 2.Department of Biochemical Analysis and Mass Spectrometry, Childrens HospitalMedical UniversityGrazAustria

Personalised recommendations