Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)



Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator–prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, Aphytoseiuli, M. phytoseiuli and Ooccidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research.


Acari Phytoseiidae Disease Pathogens Viruses Bacteria Protozoa Fungi Biological control 



We are grateful to Joop van Lenteren for his helpful comments on an earlier version of this manuscript.


  1. Andreadis TG (1987) Transmission. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 159–176Google Scholar
  2. Arutunyan ES (1985) Structural peculiarities of the digestive tract of phytoseiid mites. Biologicheskii Zhurnal Armenii 35:394–400 (in Russian)Google Scholar
  3. Becnel JJ, Jeyaprakash A, Hoy MA, Shapiro A (2002) Morphological and molecular characterization of a new microsporidian species from the predatory mite Metaseiulus occidentalis (Nesbitt) (Acari, Phytoseiidae). J Invertebr Pathol 79:163–172PubMedCrossRefGoogle Scholar
  4. Beerling EAM, van der Geest LPS (1991a) Microsporidiosis in mass—rearings of the predatory mites Amblyseius cucumeris and A. barkeri (Acarina: Phytoseiidae). Proc Exp Appl Entomol NEV Amsterdam 2:157–162Google Scholar
  5. Beerling EAM, van der Geest LPS (1991b) A microsporidium (Microspora: Pleistophoridae) in mass rearings of the predatory mites Amblyseius cucumeris and A. barkeri (Acari: Phytoseiidae): Analysis of a problem. Bull IOBC/WPRS 14:5–8Google Scholar
  6. Beerling EAM, van der Voort RJ, Kwakman P (1993) Microsporidiosis in mass rearings of predatory mites: development of a detection method. Proc Exp Appl Entomol NEV Amsterdam 4:199–204Google Scholar
  7. Bjørnson S (1998) Morphology and pathology of the predatory mite Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). PhD Thesis, University of Alberta, Edmonton, Canada, 232 ppGoogle Scholar
  8. Bjørnson S, Keddie BA (1999) Effects of Microsporidium phytoseiuli (Microsporidia) on the performance of the predatory mite, Phytoseiulus persimilis (Acari, Phytoseiidae). Biol Control 15:153–161CrossRefGoogle Scholar
  9. Bjørnson S, Keddie BA (2000) Development and pathology of two undescribed species of Microsporidia infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot. J Invertebr Pathol 76:293–300CrossRefGoogle Scholar
  10. Bjørnson S, Keddie BA (2001) Disease prevalence and transmission of Microsporidium phytoseiuli infecting the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J Invertebr Pathol 77:114–119PubMedCrossRefGoogle Scholar
  11. Bjørnson S, Raworth DA (2003) Effects of plant nutrition on the expression of abdominal discoloration in Phytoseiulus persimilis (Acari: Phytoseiidae). Can Entomol 135:129–138Google Scholar
  12. Bjørnson S, Schütte C (2003) Pathogens of mass-produced natural enemies and pollinators. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK, pp 133–165Google Scholar
  13. Bjørnson S, Steiner MY, Keddie BA (1996) Ultrastructure and pathology of Microsporidium phytoseiuli n. sp. infecting the predatory mite, Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). J Invertebr Pathol 68:223–230CrossRefGoogle Scholar
  14. Bjørnson S, Steiner MY, Keddie BA (1997) Birefringent crystals and abdominal discoloration in the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). J Invertebr Pathol 69:85–91CrossRefGoogle Scholar
  15. Bjørnson S, Raworth DA, Bédard C (2000) Abdominal discoloration and the predatory mite Phytoseiulus persimilis Athias-Henriot: prevalence of symptoms and their correlation with short-term performance. Biol Control 19:17–27CrossRefGoogle Scholar
  16. Blümel S, Hausdorf H (2002) Results of quality control tests with Phytoseiulus persimilis, Neoseiulus cucumeris and Orius laevigatus in Austria. Bull IOBC/WPRS 25:17–20Google Scholar
  17. Boucias DG, Pendland JC (1998) Principles of insect pathology. Kluwer Academic Publishers, Boston, USA 7 ppGoogle Scholar
  18. Breeuwer JAJ, Jacobs G (1996) Wolbachia: intracellular manipulators of mite reproduction. Exp Appl Acarol 20:421–434PubMedCrossRefGoogle Scholar
  19. Corpuz-Raros LA (2005) Some new species records, discovery of males in two species and first report of Wolbachia infection in predatory mites (Phytoseiidae, Acari) from the Philippines. Philipp Agricult Scient 88:431–439Google Scholar
  20. De Courcy Williams ME, Kravar-Garde L, Fenlon JS, Sunderland KD (2004) Phytoseiid mites in protected crops: the effect of humidity and food availability on egg hatch, and adult life span of Iphiseius degenerans, Neoseiulus cucumeris, N. californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 32:1–13PubMedCrossRefGoogle Scholar
  21. De Moraes GJ, Delalibera I Jr (1992) Specificity of a strain of Neozygites sp. (Zygomycetes: Entomophthorales) to Mononychellus tanajoa (Acari: Tetranychidae). Exp Appl Acarol 14:89–94CrossRefGoogle Scholar
  22. Dicke M, Sabelis MW (1988) How plants obtain predatory mites as bodyguards. Neth J Zool 38:148–165CrossRefGoogle Scholar
  23. Dicke M, Dijkman H, Wunderink R (1991) Response to synomones as a parameter in quality control of predatory mites. In: Bigler F (ed) Proceedings 5th workshop IOBC global working group “quality control of mass reared arthropods”, Wageningen, March 1991, pp 55–65Google Scholar
  24. Dicke M, Takabayashi J, Posthumus MA, Schütte C, Krips OE (1998) Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mites. Exp Appl Acarol 22:311–333CrossRefGoogle Scholar
  25. Dicke M, Schütte C, Dijkman H (2000) Change in behavioral response to herbivore-induced plant volatiles in a predatory mite population. J Chem Ecol 26:1497–1514CrossRefGoogle Scholar
  26. Di Palma A (1996) Thyphlodromus rhenanoides Athias-Henriot e T. exhilaratus Ragusa (Acari: Mesostigmata: Phytoseiidae): Osservazioni morfologiche, strutturali e considerazioni funzionali. PhD Thesis, University of Bari, Italy, 115 ppGoogle Scholar
  27. Enigl M, Schausberger P (2007) Incidence of the endosymbionts Wolbachia, Cardinium and Spiroplasma in phytoseiid mites and associated prey. Exp Appl Acarol 42:75–85PubMedCrossRefGoogle Scholar
  28. Enigl M, Zchori-Fein E, Schausberger P (2005) Negative evidence of Wolbachia in the predaceous mite Phytoseiulus persimilis. Exp Appl Acarol 36:249–262PubMedCrossRefGoogle Scholar
  29. Evans H, Shapiro M (1997) Viruses. In: Lacey LA (ed) Manual of techniques in insect pathology. Academic Press, San Diego, CA, USA, pp 17–53CrossRefGoogle Scholar
  30. Furtado IP, De Moraes GJ, Keller S (1996) Infection of Euseius citrifolius (Acari: Phytoseiidae) by an entomophthoralean fungus in Brazil. Rev Ecossistema 21:85–86Google Scholar
  31. Gols R, Schütte C, Stouthamer R, Dicke M (2007) PCR-based identification of the pathogenic bacterium, Acaricomes phytoseiuli, in the biological control agent Phytoseiulus persimilis. Biol Control 42:316–325CrossRefGoogle Scholar
  32. Groot TVM, Breeuwer JAJ (2006) Cardinium symbionts induce haploid thelytoky in most clones of three closely related Brevipalpus species. Exp Appl Acarol 39:257–271PubMedCrossRefGoogle Scholar
  33. Hess RT, Hoy MA (1982) Microorganisms associated with the spider mite predator Metaseiulus (=Typhlodromus) occidentalis: electron microscope observations. J Invertebr Pathol 40:98–106CrossRefGoogle Scholar
  34. Horton DR, Moore J (1993) Behavioral effects of parasites and pathogens in insect hosts. In: Beckage NE, Thompson SN, Frederici BA (eds) Parasites and pathogens of insects. Volume 1: parasites. Academic Press, San Diego, CA, USA, pp 107–124Google Scholar
  35. Hoy MA, Jeyaprakash A (2005) Microbial diversity in the predatory mite Metaseiulus occidentalis (Acari: Phytoseiidae) and its prey, Tetranychus urticae (Acari: Tetranychidae). Biol Control 32:427–441CrossRefGoogle Scholar
  36. Huger AM (1988) Diagnosis of microsporidian infections in mass-rearings of the predatory mites Amblyseius cucumeris and Neoseiulus barkeri. Annual report of the federal biological research centre for agriculture and forestry, pp 77–78Google Scholar
  37. Huigens ME, Luck RF, Klaassen RH et al (2000) Infectious parthenogenesis. Nature 405:178–179PubMedCrossRefGoogle Scholar
  38. Hunter MS, Perlman SJ, Kelly SE (2003) A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella. Proc R Soc Lond B 270:2185–2190CrossRefGoogle Scholar
  39. Janssen A (1999) Plants with spider mite prey attract more predatory mites than clean plants under greenhouse conditions. Entomol Exp Appl 90:191–198CrossRefGoogle Scholar
  40. Jeyaprakash A, Hoy MA (2004) Multiple displacement amplification in combination with high-fidelity PCR improves detection of bacteria from single females or eggs of Metaseiulus occidentalis (Nesbitt) (Acari: Phytoseiidae). J Invertebr Pathol 86:111–116PubMedCrossRefGoogle Scholar
  41. Johanowicz DL, Hoy MA (1996) Wolbachia in a predator–prey system: 16S ribosomal DNA analysis of two phytoseiids (Acari: Phytoseiidae) and their prey (Acari: Tetranychidae). Ann Ent Soc Am 89:435–441Google Scholar
  42. Johanowicz DL, Hoy MA (1998a) Experimental induction and termination of non-reciprocal reproductive incompatibilities in a parahaploid mite. Entomol Exp Appl 87:51–58CrossRefGoogle Scholar
  43. Johanowicz DL, Hoy MA (1998b) The manipulation of arthropod reproduction by Wolbachia endosymbionts. Fla Entomol 81:310–317CrossRefGoogle Scholar
  44. Johanowicz DL, Hoy MA (1999) Wolbachia infection dynamics in experimental laboratory populations of Metaseiulus occidentalis. Entomol Exp Appl 93:259–268CrossRefGoogle Scholar
  45. Keller S (1997) The genus Neozygites (Zygomycetes, Entomophthorales) with special reference to species found in tropical regions. Sydowia 49:118–146Google Scholar
  46. Lacey L (ed) (1997) Manual of techniques in insect pathology. Academic Press, San Diego, CA, USA, 409 ppGoogle Scholar
  47. Lighthart B, Sewall D, Thomas DR (1988) Effect of several stress factors on the susceptibility of the predatory mite, Metaseiulus occidentalis (Acari: Phytoseiidae), to the weak bacterial pathogen Serratia marcescens. J Invertebr Pathol 52:33–42CrossRefGoogle Scholar
  48. Maeda T, Takabayashi J, Yano S, Takafuji A (2000) The effects of rearing conditions on the olfactory response of predatory mites, Phytoseiulus persimilis and Amblyseius womersleyi (Acari: Phytoseiidae). Appl Entomol Zool 35:345–351CrossRefGoogle Scholar
  49. Maeda T, Takabayashi J, Yano S, Takafuji A (2001) Variation in the olfactory response of 13 populations of the predatory mite Amblyseius womersleyi to Tetranychus urticae-infested plant volatiles (Acari: Phytoseiidae, Tetranychidae). Exp Appl Acarol 25:55–64PubMedCrossRefGoogle Scholar
  50. Margolies DC, Sabelis MW, Boyer JE (1997) Response of a phytoseiid predator to herbivore induced plant volatiles: selection on attraction and effect on prey exploitation. J Ins Behav 10:695–709CrossRefGoogle Scholar
  51. McMurtry JA, Croft BA (1997) Life-styles of phytoseiid mites and their roles in biological control. Annu Rev Entomol 42:291–321PubMedCrossRefGoogle Scholar
  52. Olsen LE, Hoy MA (2002) Heat curing Metaseiulus occidentalis (Nesbitt) (Acari, Phytoseiidae) of a fitness reducing microsporidium. J Invertebr Pathol 79:173–178PubMedCrossRefGoogle Scholar
  53. Poinar G, Poinar R (1998) Parasites and pathogens of mites. Annu Rev Entomol 43:449–469PubMedCrossRefGoogle Scholar
  54. Pukall R, Schumann P, Schütte C et al (2006) Acaricomes phytoseiuli gen. nov., sp. nov., isolated from the predatory mite Phytoseiulus persimilis. Int J Syst Evol Microbiol 56:465–469PubMedCrossRefGoogle Scholar
  55. Raworth DA, Bjørnson S (2002) Fecundity and survival of mass reared Phytoseiulus persimilis (Acari: Phytoseiidae). Bull IOBC/WPRS 25:233–236Google Scholar
  56. Sabelis MW, van de Baan HE (1983) Location of distant spider mite colonies by phytoseiid predators: demonstration of specific kairomones emitted by Tetranychus urticae and Panonychus ulmi. Entomol Exp Appl 33:303–314Google Scholar
  57. Sabelis MW, Janssen A, Pallini A et al (1999) Behavioral responses of predatory and herbivorous arthropods to induced plant volatiles: from evolutionary ecology to agricultural applications. In: Agrawal AA, Tuzun S, Bent E (eds) Induced plant defences against pathogens and herbivores. Biochemistry ecology and agriculture. APS Press, St. Paul, pp 269–296Google Scholar
  58. Schausberger P, Croft BA (2000) Cannibalism and intraguild predation among phytoseiid mites: are aggressiveness and prey preference related to diet specialization? Exp Appl Acarol 24:709–725PubMedCrossRefGoogle Scholar
  59. Schütte C (2006) A novel bacterial disease of the predatory mite Phytoseiulus persimilis: disease syndrome, disease transmission and pathogen isolation. PhD Thesis, Wageningen University, Wageningen, The Netherlands, 208 ppGoogle Scholar
  60. Schütte C, Hulshof J, Dijkman H, Dicke M (1995) Change in foraging behavior of the predatory mite Phytoseiulus persimilis: some characteristics of a mite population that does not respond to herbivore-induced synomones. Proc Exp Appl Entomol NEV Amsterdam 6:133–139Google Scholar
  61. Schütte C, Baarlen P, van Dijkman H, Dicke M (1996) How can predatory mites loose their response to plant signals? Proc Exp Appl Entomol NEV Amsterdam 7:195–196Google Scholar
  62. Schütte C, Baarlen P, van Dijkman H, Dicke M (1998) Change in foraging behaviour of the predatory mite Phytoseiulus persimilis after exposure to dead conspecifics and their products. Entomol Exp Appl 88:295–300CrossRefGoogle Scholar
  63. Schütte C, Bjørnson S, Kleespies RG, Huger AM (2005) Natural enemies applied in biological pest control: pathogens in field and mass-reared populations. Bull IOBC/WPRS 28:185–188Google Scholar
  64. Schütte C, Klijn P, Dicke M (2006a) A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae): 1. Symptoms in adult females. Exp Appl Acarol 38:275–297PubMedCrossRefGoogle Scholar
  65. Schütte C, Negash T, Poitevin O, Dicke M (2006b) A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae): 2. Disease transmission by adult females. Exp Appl Acarol 39:85–103PubMedCrossRefGoogle Scholar
  66. Schütte C, Poitevin O, Dicke M (2008a) A novel disease affecting the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae): evidence for the involvement of bacteria. Biocon Sci Technol 18:1–19CrossRefGoogle Scholar
  67. Schütte C, Gols R, Kleespies RG, Poitevin O, Dicke M (2008b) Novel bacterial pathogen Acaricomes phytoseiuli causes severe disease symptoms and histopathological changes in the predatory mite Phytoseiulus persimilis (Acari, Phytoseiidae). J Invert Pathol 98:127–135CrossRefGoogle Scholar
  68. Sikorowski PP, Lawrence AM (1994) Microbial contamination and insect rearing. Am Entomol 40:240–253Google Scholar
  69. Skirvin D, Fenlon J (2003a) Of mites and movement: the effect of plant connectedness and temperature on movement of Phytoseiulus persimilis. Biol Control 27:242–250CrossRefGoogle Scholar
  70. Skirvin D, Fenlon J (2003b) The effect of temperature on the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 31:37–49PubMedCrossRefGoogle Scholar
  71. Steiner MY (1993a) Some observations on the quality of biological control organisms used in greenhouses. Bull IOBC/WPRS 16:165–168Google Scholar
  72. Steiner MY (1993b) Quality control requirements for pest biological control agents. Alberta Government Publication AECV93-R6, Alberta Environmental Centre, Vergeville, AB, 112 ppGoogle Scholar
  73. Steiner MY, Bjørnson S (1996) Performance of Phytoseiulus persimilis and other biological control agents—on what are we basing our standards? Bull IOBC/WPRS 19:163–166Google Scholar
  74. Stouthamer R, Breeuwer JAJ, Hurst GDG (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102PubMedCrossRefGoogle Scholar
  75. Stouthamer R, Breeuwer JAJ, Luck RF, Werren JH (1993) Molecular identification of micro-organisms associated with parthenogenesis. Nature 361:66–68PubMedCrossRefGoogle Scholar
  76. Šut’áková G (1988) Electron microscopic study of developmental stages of Rickettsiella phytoseiuli in Phytoseiulus persimilis Athias-Henriot (Gamasoidea: Phytoseiidae) mites. Acta Virol 32:50–54Google Scholar
  77. Šut’áková G (1991) Rickettsiella phytoseiuli and its relation to mites and ticks. In: Dusbábek F, Bukva V (eds) Modern Acarology. Academia, Praque, pp 45–48Google Scholar
  78. Šut’áková G (1994) Phenomenon of Rickettsiella phytoseiuli in Phytoseiulus persimilis mite. Acta Microbiol Immun Hungarica 41:411–414Google Scholar
  79. Šut’áková G, Arutunyan ES (1990) The spider mite predator Phytoseiulus persimilis and its association with micro-organisms: an electron microscope study. Acta Entomol Bohemoslov 87:431–434Google Scholar
  80. Šut’áková G, Rehácek J (1989) Experimental infection with Rickettsiella phytoseiuli in adult female Dermacentor reticulatus (Ixodidae): an electron microscopy study. Exp Appl Acarol 7:299–311CrossRefGoogle Scholar
  81. Šut’áková G, Rüttgen F (1978) Rickettsiella phytoseiuli and virus-like particles in Phytoseiulus persimilis (Gamasoidea: Phytoseiidae) mites. Acta Virol 22:333–336Google Scholar
  82. Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, San Diego, 666 ppGoogle Scholar
  83. Tanigoshi LK (1982) Advances in knowledge of the biology of the Phytoseiidae. In: Hoy MA (ed) Recent advances in knowledge of the Phytoseiidae. Agricultural Science Publications, Berkely, pp 1–22Google Scholar
  84. Tanigoshi LK, Fagerlund J, Nishio-Wong JY (1981) Significance of temperature and food resources of the developmental biology of Amblyseius hibisci (Chant) (Acarina, Phytoseiidae). Z Angew Entomol 92:409–419Google Scholar
  85. van de Vrie M, Price JF (1997) Location and dispersal of Phytoseiulus persimilis in strawberry ecosystems. Med Fac Landbouww Univ Gent 62:449–454Google Scholar
  86. van der Geest LPS, Elliot SL, Breeuwer JA, Beerling EA (2000) Diseases of mites. Exp Appl Acarol 24:497–560PubMedCrossRefGoogle Scholar
  87. van Lenteren JC (2003a) Need of quality control for mass-produced biological control agents. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK, pp 1–18Google Scholar
  88. van Lenteren JC (2003b) Commercial availability of biological control agents. In: van Lenteren JC (ed) Quality control and production of biological control agents: theory and testing procedures. CABI Publishing, Wallingford, UK, pp 167–179Google Scholar
  89. Weeks AR, Breeuwer JAJ (2003) A new bacterium from the Cytophaga-Flavobacterium-Bacteroides phylum that causes sex-ratio distortion. In: Bourtzis K, Miller TA (eds) Insect symbiosis. CRC Press, New York, NY, USA, pp 165–176Google Scholar
  90. Weeks AR, Stouthamer R (2004) Increased fecundity associated with infection by a Cytophaga-like intracellular bacterium in the predatory mite, Metaseiulus occidentalis. Proc R Soc Lond B 271:S193–S195CrossRefGoogle Scholar
  91. Weeks AR, Marec F, Breeuwer JAJ (2001) A mite species that consists entirely of haploid females. Science 292:2479–2482PubMedCrossRefGoogle Scholar
  92. Weeks AR, Velten R, Stouthamer R (2003) Incidence of a new sex-ratio-distorting endosymbiotic bacterium among arthropods. Proc R Soc Lond B 270:1857–1865CrossRefGoogle Scholar
  93. Yao DS, Chant DA (1990) Changes in body weight of two species of predatory mites (Acarina: Phytoseiidae) as a consequence of feeding in an interactive system. Exp Appl Acarol 8:195–220CrossRefGoogle Scholar
  94. Zchori-Fein E, Gottlieb Y, Kelly SE et al (2001) A newly discovered bacterium associated with parthenogenesis and a change in host selection behavior in parasitoids wasps. Proc Natl Acad Sci USA 98:12555–12560PubMedCrossRefGoogle Scholar
  95. Zchori-Fein E, Perlman SJ, Kelly SE et al (2004) Characterization of a “Bacteroidetes” symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of “Candidatus Cardinium hertigii”. Int J Syst Evol Microbiol 54:961–968PubMedCrossRefGoogle Scholar
  96. Zemek R, Nachman G (1999) Interaction in tritrophic acarine predator-prey metapopulation system: prey location and distance moved by Phytoseiulus persimilis (Acari: Phytoseiidae). Exp Appl Acarol 23:21–40CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations