Advertisement

Experimental and Applied Acarology

, Volume 46, Issue 1–4, pp 247–257 | Cite as

Sprays of emulsifiable Beauveria bassiana formulation are ovicidal towards Tetranychus urticae (Acari: Tetranychidae) at various regimes of temperature and humidity

  • Wei-Bing Shi
  • Ming-Guang FengEmail author
  • Shu-Sheng Liu
Article

Abstract

Aerial conidia of Beauveria bassiana in an emulsifiable formulation germinated by >95% after 24 h exposure to the regimes of 20, 25 and 30°C with 51%, 74% and 95% RH. Ovicidal activities of the formulation towards two-spotted spider mite, Tetranychus urticae, were assayed at the concentrations of 0, 18, 160 and 693 conidia mm−2 sprayed separately onto fava bean leaves including 39 (25–76) eggs per capita. All the sprayed eggs on the leaves were directly exposed to the different regimes for hatch after 24 h maintenance in covered Petri dishes. Generally, hatched proportions increased over post-spray days and decreased with the elevated fungal concentrations; no more eggs hatched from day 9 or 10 onwards. Based on the counts of the hatched/non-hatched eggs in the different regimes, the final egg mortalities were 15.0–40.4%, 48.9–66.6% and 62.9–87.5% at the low, medium and high concentrations, respectively, but only 5.6–11.3% in blank controls. The RH effect on the fungal action was significant at 20 and 25°C but not at 30°C whereas the effect of temperature was significant at 51% and 74% RH but not at 95% RH. Probit analysis of the egg mortalities versus the fungal sprays generated median lethal concentrations (LC50) of 65–320 conidia mm−2 at all the regimes, and of only 65–78 conidia mm−2 at 25–30°C with 74–95% RH. The results highlight ovicidal activities of the emulsifiable formulation against the mite species at the tested regimes and its potential use in spider mite control.

Keywords

Beauveria bassiana Tetranychus urticae Fungal formulation Ovicidal activity Environmental effect Spider mite control 

Notes

Acknowledgements

Funding of this study was provided jointly by the grants from the Natural Science Foundation of China (30571250), the Ministry of Science and Technology of China (2006BAD08A02 and 2007DFA3100), and the Zhejiang Provincial R&D Program (2007C12035).

References

  1. Altre JA, Vandenberg JD, Cantone FA (1999) Pathogenicity of Paecilomyces fumosoroseus isolates to diamondback moth, Plutella xylostella: correlation with spore size, germination speed, and attachment to cuticle. J Invertebr Pathol 73:332–338. doi: 10.1006/jipa.1999.4844 PubMedCrossRefGoogle Scholar
  2. Alves SB, Rossi LS, Lopes RB, Tamai MA, Pereira RM (2002) Beauveria bassiana yeast phase on agar medium and its pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidae). J Invertebr Pathol 81:70–77. doi: 10.1016/S0022-2011(02)00147-7 PubMedCrossRefGoogle Scholar
  3. Bateman RP, Carey M, Moore D, Prior C (1993) The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann Appl Biol 122:145–152. doi: 10.1111/j.1744-7348.1993.tb04022.x CrossRefGoogle Scholar
  4. Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Technol 10:357–384. doi: 10.1080/09583150050114972 CrossRefGoogle Scholar
  5. Dagli F, Tunc I (2001) Dicofol resistance in Tetranychus cinnabarinus: resistance and stability of resistance in populations from Antalya, Turkey. Pest Manag Sci 57:609–614. doi: 10.1002/ps.334 PubMedCrossRefGoogle Scholar
  6. Doberski JW (1981) Comparative laboratory studies on three fungal pathogens of the elm bark beetle, Scolytus scolytus: effect of temperature and humidity on infection by Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus. J Invertebr Pathol 37:195–200. doi: 10.1016/0022-2011(81)90075-6 CrossRefGoogle Scholar
  7. Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778. doi: 10.1016/S0261-2194(01)00110-7 CrossRefGoogle Scholar
  8. Fargues J, Luz C (2000) Effects of fluctuating moisture and temperature regimes on the infection potential of Beauveria bassiana for Rhodnius prolixus. J Invertebr Pathol 75:202–211. doi: 10.1006/jipa.1999.4923 PubMedCrossRefGoogle Scholar
  9. Feng MG, Johnson JB, Kish LP (1990) Survey of entomopathogenic fungi naturally infecting cereal aphids (Homoptera: Aphididae) of irrigated grain crops in southwestern Idaho. Environ Entomol 19:1534–1542Google Scholar
  10. Feng MG, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Sci Technol 4:3–34CrossRefGoogle Scholar
  11. Feng MG, Xu Q, Xu JH (1999) Humidity control in biological experiments: modified device and methodology. Chin J Appl Ecol 10:357–361 in ChineseGoogle Scholar
  12. Feng MG, Chen B, Ying SH (2004a) Trials of Beauveria bassiana, Paecilomyces fumosoroseus and imidacloprid for management of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on greenhouse grown lettuce. Biocontrol Sci Technol 14:531–544. doi: 10.1080/09583150410001682269 CrossRefGoogle Scholar
  13. Feng MG, Pu XY, Ying SH, Wang YG (2004b) Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leafhopper Empoasca vitis in southern China. Crop Prot 23:489–496. doi: 10.1016/j.cropro.2003.10.004 CrossRefGoogle Scholar
  14. Gerson U, Cohen E (1989) Resurgences of spider mites (Acari: Tetranychidae) induced by synthetic pyrethroids. Exp Appl Acarol 6:29–46. doi: 10.1007/BF01193231 CrossRefGoogle Scholar
  15. Guo FY, Zhang ZQ, Zhao ZM (1998) Pesticide resistance of Tetranychus cinnabarinus (Acari: Tetranychidae) in China: a review. Syst Appl Acarol 3:3–7Google Scholar
  16. Hazan A, Gerson U, Tahori AS (1974) Spider mite webbing I The production of webbing under various environmental conditions. Acarologia 16:68–84Google Scholar
  17. Ho CC, Lo CC, Chen WH (1997) Spider mite (Acari: Tetranychidae) on various crops in Taiwan. J Agric Res China 46:333–346Google Scholar
  18. Jackson CW, Heale JB, Llewellyn M (1989) Characteristics relating to the pathogenicity of Metarhizium anisopliae toward Nilaparvata lugens. J Invertebr Pathol 53:25–31. doi: 10.1016/0022-2011(89)90070-0 CrossRefGoogle Scholar
  19. Kooyman C, Godonou I (1997) Infection of Schistocerca gregaria (Orthoptera: Acrididae) hoppers by Metarhizium flavoviride (Deuteromycotina: Hyphomycetes) conidia in an oil formulation applied under desert conditions. Bull Entomol Res 87:105–107CrossRefGoogle Scholar
  20. Langewald J, Kooyman C, Douro-Kpindou O, Lomer CJ, Dahmoud AO, Mohamed HO (1997) Field treatment of desert locust (Schistocerca gregaria Forskal) hoppers in Mauritania using an oil formulation of the entomopathogenic fungus Metarhizium flavoviride. Biocontrol Sci Technol 7:603–611. doi: 10.1080/09583159730659 CrossRefGoogle Scholar
  21. Lekimme M, Mignon B, Tombeux S, Focant C, Marechal F, Losson B (2006) In vitro entomopathogenic activity of Beauveria bassiana against Psoroptes spp. (Acari: Psoroptidae). Vet Parasitol 139:196–202. doi: 10.1016/j.vetpar.2006.02.041 PubMedCrossRefGoogle Scholar
  22. Lekimme M, Focant C, Farnir F, Mignon B, Losson B (2008) Pathogenicity and thermotolerance of entomopathogenic fungi for the control of the scab mite, Psoroptes ovis. Exp Appl Acarol 45(this issue)Google Scholar
  23. Luz C, Fargues J (1999) Dependence of the entomopathogenic fungus, Beauveria bassiana, on high humidity for infection of Rhodnius prolixus. Mycopathology 146:33–41. doi: 10.1023/A:1007019402490 CrossRefGoogle Scholar
  24. Malsam O, Kilian M, Oerke EC, Dehne HW (2002) Oils for increased efficacy of Metarhizium anisopliae to control whiteflies. Biocontrol Sci Technol 12:337–348. doi: 10.1080/09583150220128121 CrossRefGoogle Scholar
  25. Maniania NK, Bugeme DM, Wekesa VW, Delalibera I Jr, Knapp M (2008) Role of entomopathogenic fungi in the control of Tetranychus evansi and Tetranychus urticae (Acari: Tetranychidae) pests of horticultural crops. Exp Appl Acarol 45(this issue)Google Scholar
  26. Marcandier S, Khachatourians GG (1987) Susceptibility of the migratory grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae), to Beauveria bassiana (Bals.) Vuillemin (Hyphomycete): influence of relative humidity. Can Entomol 119:901–907CrossRefGoogle Scholar
  27. Meikle WG, Mercadier G, Holst N, Girod V (2008) Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health. Exp Appl Acarol 45(this issue)Google Scholar
  28. Milner RJ, Staples JA, Lutton GG (1997) The effect of humidity on germination and infection of termites by the hyphomycete, Metarhizium anisopliae. J Invertebr Pathol 69:64–69. doi: 10.1006/jipa.1996.4636 PubMedCrossRefGoogle Scholar
  29. Moore GE (1973) Pathogenicity of three entomogenous fungi to the southern pine beetle at various temperatures and humidities. Environ Entomol 2:54–57Google Scholar
  30. Poinar GO Jr (1998) Parasites and pathogens of mites. Annu Rev Entomol 43:449–469. doi: 10.1146/annurev.ento.43.1.449 PubMedCrossRefGoogle Scholar
  31. Pu XY, Feng MG, Shi CH (2005) Impact of three application methods on the field efficacy of a Beauveria bassiana-based mycoinsecticide against the false-eye leafhopper, Empoasca vitis (Homoptera: Cicadellidae) in tea canopy. Crop Prot 24:167–175. doi: 10.1016/j.cropro.2004.07.006 CrossRefGoogle Scholar
  32. Roberts DW, St. Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70. doi: 10.1016/S0065–2164(04)54001-7 PubMedCrossRefGoogle Scholar
  33. Ros VID, Breeuwer JAJ (2007) Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding. Exp Appl Acarol 42:239–262. doi: 10.1007/s10493-007-9092-z PubMedCrossRefGoogle Scholar
  34. Shaw KE, Davidson G, Clark SJ, Ball BV, Pell JK, Chandler D et al (2002) Laboratory bioassays to assess the pathogenicity of mitosporic fungi to Varroa destructor (Acari: Mesostigmata), an ectoparasitic mite of the honeybee, Apis mellifera. Biol Control 24:266–276. doi: 10.1016/S1049-9644(02)00029-4 CrossRefGoogle Scholar
  35. Shi WB, Feng MG (2004) Lethal effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biol Control 30:165–173. doi: 10.1016/j.biocontrol.2004.01.017 CrossRefGoogle Scholar
  36. Shi WB, Feng MG (2006) Field efficacy of application of Beauveria bassiana formulation and low rate pyridaben for sustainable control of citrus red mite Panonychus citri (Acari: Tetranychidae) in orchards. Biol Control 39:210–217. doi: 10.1016/j.biocontrol.2006.06.016 CrossRefGoogle Scholar
  37. Shi WB, Jiang Y, Feng MG (2005) Compatibility of ten acaricides with Beauveria bassiana and enhancement of fungal infection to Tetranychus cinnabarinus (Acari: Tetranychidae) eggs by sublethal application rates of pyridaben. Appl Entomol Zool (Jpn) 40:659–666. doi: 10.1303/aez.2005.659 CrossRefGoogle Scholar
  38. Shi WB, Zhang L, Feng MG (2008a) Time-concentration-mortality responses of carmine spider mite (Acari: Tetranychidae) females to biocontrol agents of three hypocrealean fungi in a standardized bioassay system. Biol Control 46. doi: 10.1016/j.biocontrol.2008.04.006
  39. Shi WB, Zhang LL, Feng MG (2008b) Field trials of four formulations of Beauveria bassiana and Metarhizium anisopliae for control of cotton spider mites (Acari: Tetranychidae) in the Tarim Basin of China. Biol Control 45:48–55. doi: 10.1016/j.biocontrol.2007.11.006 CrossRefGoogle Scholar
  40. Tang QY, Feng MG (2007) DPS data processing system: experimental design, statistical analysis and data mining. Science Press, BeijingGoogle Scholar
  41. Van der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM (2000) Diseases of mites. Exp Appl Acarol 24:497–560. doi: 10.1023/A:1026518418163 PubMedCrossRefGoogle Scholar
  42. Wekesa VW, Maniania NK, Knapp M, Boga HI (2005) Pathogenicity of Beauveria bassiana and Metarhizium anisopliae to the tobacco spider mite Tetranychus evansi. Exp Appl Acarol 36:41–50. doi: 10.1007/s10493-005-0508-3 PubMedCrossRefGoogle Scholar
  43. Wekesa VW, Knapp M, Maniania NK, Boga HI (2006) Effects of Beauveria bassiana and Metarhizium anisopliae on mortality, fecundity and egg fertility of Tetranychus evansi. J Appl Entomol 130:155–159. doi: 10.1111/j.1439-0418.2006.01043.x CrossRefGoogle Scholar
  44. Wraight SP, Ramos ME (2002) Application parameters affecting field efficacy of Beauveria bassiana foliar treatments against Colorado potato beetle Leptinotarsa decemlineata. Biol Control 23:164–178. doi: 10.1006/bcon.2001.1004 CrossRefGoogle Scholar
  45. Wraight SP, Carruthers RI, Jaronski ST, Bradley CA, Garza CJ, Galaini-Wraight S (2000) Evaluation of the entomopathogenic fungi Beauveria bassiana and Paecilomyces fumosoroseus for microbial control of the silverleaf whitefly, Bemisia argentifolii. Biol Control 17:203–217. doi: 10.1006/bcon.1999.0799 CrossRefGoogle Scholar
  46. Ye SD, Dun YH, Feng MG (2005) Time and concentration dependent interactions of Beauveria bassiana with sublethal rates of imidacloprid against the aphid pests Macrosiphoniella sanborni and Myzus persicae. Ann Appl Biol 146:459–468. doi: 10.1111/j.1744-7348.2005.040147.x CrossRefGoogle Scholar
  47. Ye SD, Ying SH, Chen C, Feng MG (2006) New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice. Biotechnol Lett 28:799–804. doi: 10.1007/s10529-006-9004-z PubMedCrossRefGoogle Scholar
  48. Ying SH, Feng MG (2004) Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. J Appl Microbiol 97:323–331. doi: 10.1111/j.1365-2672.2004.02311.x PubMedCrossRefGoogle Scholar
  49. Zou G, Ying SH, Shen ZC, Feng MG (2006) Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana. Environ Microbiol 8:2096–2105. doi: 10.1111/j.1462-2920.2006.01086.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Institute of Microbiology, College of Life SciencesZhejiang UniversityHangzhouChina
  2. 2.Institute of Insect Science, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina

Personalised recommendations