Experimental and Applied Acarology

, Volume 46, Issue 1–4, pp 95–104 | Cite as

Pathogenicity and thermotolerance of entomopathogenic fungi for the control of the scab mite, Psoroptes ovis

  • M. Lekimme
  • C. Focant
  • F. Farnir
  • B. Mignon
  • B. Losson


Psoroptes ovis is responsible for a highly contagious skin condition, both in sheep and cattle. This parasite has a marked economical impact in the sheep and cattle industry. Biological control is considered as a realistic alternative to chemotherapeutic control. Laboratory experiments were carried out to evaluate the pathogenicity and the thermotolerance of twelve isolates of entomopathogenic fungi from four genera (Beauveria Vuillemin, Metarhizium Sorokin, Paecilomyces Bainier and Verticillium Nees). The pathogenicity was evaluated by the survival of P. ovis females after exposure to 106 to 108 conidia ml−1 in humidity chambers. Results revealed intra- and interspecies differences. All isolates with the exception of B. bassiana IHEM3558 and V. lecanii MUCL8672 induced 50% mortality within 2 days at the highest concentration. At this concentration the entire mite population became infected with all isolates but B. bassiana IHEM3558; however, only four isolates gave rise to 100% infected cadavers at the lowest concentration. The thermotolerance of each isolate was evaluated by measuring its growth on an artificial medium kept between 25 and 37.5°C. All isolates were able to grow up to 30°C but only two, M. anisopliae IHEM18027 and Paecilomyces farinosus MUCL18885, tolerated temperatures up to 35°C. These two isolates could be considered as good candidates for further use as biopesticide taking into account their virulence and thermotolerance. Other critical factors linked with the implementation of this type of biocontrol in P. ovis infected animals are discussed.


Psoroptes ovis Biological control Entomopathogenic fungi Temperature Virulence 



This study was supported by the convention S-6145 from the Ministère de la Santé, Belgium. We would like also to thank Dr. F. Symoens (IHEM) for providing isolates and Dr. V. Demoulin (ULg) for his useful advice.


  1. Abolins S, Thind B, Jackson V, Luke B, Moore D, Wall R et al (2007) Control of the sheep scab mite Psoroptes ovis in vivo and in vitro using fungal pathogens. Vet Parasitol 148:310–317. doi: 10.1016/j.vetpar.2007.06.008 PubMedCrossRefGoogle Scholar
  2. Barson G, Renn N, Bywater AF (1994) Laboratory evaluation of six species of entomopathogenic fungi for the control of the house fly (Musca domestica L.), a pest of intensive animal units. J Invertebr Pathol 64:107–113PubMedCrossRefGoogle Scholar
  3. Brooks AJ, Wall R (2001) Infection of Psoroptes mites with the fungus Metarhizium anisopliae. Exp Appl Acarol 25:869–880. doi: 10.1023/A:1020428514608 PubMedCrossRefGoogle Scholar
  4. Brooks A, Wall R (2005) Horizontal transmission of fungal infection by Metarhizium anisopliae in parasitic Psoroptes mites (Acari: Psoroptidae). Biol Control 34:58–65. doi: 10.1016/j.biocontrol.2005.03.016 CrossRefGoogle Scholar
  5. Brooks AJ, Aquino de Muro M, Burree E, Moore D, Taylor MA, Wall R (2004) Growth and pathogenicity of isolates of the fungus Metarhizium anisopliae against the parasitic mite, Psoroptes ovis: effects of temperature and formulation. Pest Manag Sci 60:1043–1049. doi: 10.1002/ps.910 PubMedCrossRefGoogle Scholar
  6. Chandler D, Davidson G, Pell JK, Ball BV, Shaw K, Sunderland KD (2000) Fungal biocontrol of Acari. Biocontrol Sci Technol 10:357–384. doi: 10.1080/09583150050114972 CrossRefGoogle Scholar
  7. Daoust RA, Roberts DW (1982) Virulence of natural and insect-passaged strains of Metarhizium anisopliae to mosquito larvae. J Invertebr Pathol 40:107–117. doi: 10.1016/0022-2011(82)90042-8 CrossRefGoogle Scholar
  8. Darwish E, Zayed A (2002) Pathogenicity of two entomopathogenic hyphomycetes, Beauveria bassiana and Metarhizium anisopliae, to the housefly Musca domestica L. J Egypt Soc Parasitol 32:785–796PubMedGoogle Scholar
  9. Davidson G, Phelps K, Sunderland KD, Pell JK, Ball BV, Shaw KE et al (2003) Study of temperature-growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. J Appl Microbiol 94:816–825. doi: 10.1046/j.1365-2672.2003.01871.x PubMedCrossRefGoogle Scholar
  10. Devi KU, Sridevi V, Mohan CM, Padmavathi J (2005) Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J Invertebr Pathol 88:181–189. doi: 10.1016/j.jip.2005.02.001 PubMedCrossRefGoogle Scholar
  11. Fargues J (1981) Spécificité des Hyphomycètes entomopathogènes et résistance interspécifique des larves d’insectes. PhD Thesis, Université de Paris 6, 2 volsGoogle Scholar
  12. Fargues J, Goettel MS, Smits N, Ouedraogo A, Rougier M (1997) Effect of temperature on vegetative growth of Beauveria bassiana isolates from different origins. Mycologia 89:389–392. doi: 10.2307/3761032 CrossRefGoogle Scholar
  13. Fernandes EKK, Rangel DEN, Moraes AML, Bittencourt VREP, Roberts DW (2007) Variability in tolerance to UV-B radiation among Beauveria spp. Isolates. J Invertebr Pathol 96:237–243. doi: 10.1016/j.jip. 2007.05.007 PubMedCrossRefGoogle Scholar
  14. Ferron P, Diomandé T (1969) Sur la spécificité à l’égard des insectes de Metarrhizium anisopliae (Metsch.) Sorokin (fungi imperfecti) en fonction de l’origine des souches de ce champignon. CR Acad Sci Ser D 268:331–332Google Scholar
  15. Frazzon AP, Da Silva Vaz Junior I, Masuda A, Schrank A, Vainstein MH (2000) In vitro assessment of Metarhizium anisopliae isolates to control the cattle tick Boophilus microplus. Vet Parasitol 94:117–125. doi: 10.1016/S0304-4017(00)00368-X Google Scholar
  16. Gindin G, Samish M, Zangi G, Mishoutchenko A, Glazer I (2002) The susceptibility of different species and stages of ticks to entomopathogenic fungi. Exp Appl Acarol 28:283–288. doi: 10.1023/A:1025379307255 PubMedCrossRefGoogle Scholar
  17. Hallsworth JE, Magan N (1999) Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. J Invertebr Pathol 74:261–266. doi: 10.1006/jipa.1999.4883 PubMedCrossRefGoogle Scholar
  18. Hiroki S, Mitsuaki S, Noritoshi M (2005) Germination activities of two entomopathogenic fungi, Paecilomyces cateniannulatus and P fumosoroseus. Kyushu J For Res 58:75–77Google Scholar
  19. Iskandarov US, Guzalova AG, Davranov KD (2006) Effects of nutrient medium composition and temperature on the germination of conidia and the entomopathogenic activity of the fungi. Prikl Biokhim Mikrobiol 42:81–85PubMedGoogle Scholar
  20. Kaaya GP, Munyinyi DM (1995) Biocontrol potential of the entomogenous fungi Beauveria bassiana and Metarhizium anisopliae for Tsetse flies (Glossina spp.) at developmental sites. J Invertebr Pathol 66:237–241. doi: 10.1006/jipa.1995.1095 PubMedCrossRefGoogle Scholar
  21. Kaaya GP, Hassan S (2000) Entomogenous fungi as promising biopesticides for tick control. Exp Appl Acarol 24:913–926. doi: 10.1023/A:1010722914299 CrossRefGoogle Scholar
  22. Kabaluk T, Gazdik K (2004) Directory of microbial pesticides for agricultural crops in OECD Countries 2004. http://www.agr.gc.ca/env/pdf/cat_e.pdf, Internet 05 November 2007
  23. Lekimme M, Mignon B, Tombeux S, Focant C, Maréchal F, Losson B (2006a) In vitro entomopathogenic activity of Beauveria bassiana against Psoroptes spp. (Acari: Psoroptidae). Vet Parasitol 139:196–202. doi: 10.1016/j.vetpar.2006.02.041 PubMedCrossRefGoogle Scholar
  24. Lekimme M, Mignon B, Leclipteux T, Tombeux S, Maréchal F, Losson B (2006b) In vitro tests for evaluation of the hatchability of the eggs of Psoroptes mites following exposure to acaricidal compounds. Med Vet Entomol 20:1–4. doi: 10.1111/j.1365-2915.2006.00597.x CrossRefGoogle Scholar
  25. Liu H, Skinner M, Parker BL, Brownbridge M (2002) Pathogenicity of Beauveria bassiana and Metarhizium anisopliae (Deuteromycotina: Hyphomycetes), and other entomopathogenic fungi against Lygus lineolaris (Hemiptera: Miridae). J Econ Entomol 95:675–681PubMedGoogle Scholar
  26. Lord JC (2005) Low humidity, moderate temperature, and desiccant dust favour efficacy of Beauveria bassiana (Hyphomycetes: Moniliales) for the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bruchidae). Biol Control 34:180–186. doi: 10.1016/j.biocontrol.2005.05.004 CrossRefGoogle Scholar
  27. Luz C, Fargues J (1997) Temperature and moisture requirements for conidial germination of an isolate of the hyphomycete Beauveria bassiana (Bals.) Vuill., pathogenic to Rhodnius prolixus (Ståhl) (Hem., Reduviidae). Mycopathologia 138:117–125. doi: 10.1023/A:1006803812504 PubMedCrossRefGoogle Scholar
  28. Magalhães BP, Boucias DG (2004) Effects of drying on the survival of conidiophores of Metarhizium anisopliae var acridum Driver & Milner. J Orthoptera Res 13:155–159. doi: 10.1665/1082-6467(2004)013[0155:EODOTS]2.0.CO;2 CrossRefGoogle Scholar
  29. Meyling NV, Eilenberg J (2007) Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: potential for conservation biological control. Biol Control 43:145–155. doi: 10.1016/j.biocontrol.2007.07.007 CrossRefGoogle Scholar
  30. Onofre SB, Miniuk CM, De Barros NM, Azevedo JL (2001) Pathogenicity of four strains of entomopathogenic fungi against the bovine tick Boophilus microplus. Am J Vet Res 62:1478–1480. doi: 10.2460/ajvr.2001.62.1478 PubMedCrossRefGoogle Scholar
  31. Polar P, Aquino de Muro M, Kairo MTK, Moore D, Pegram R, John SA et al (2005) Thermal characteristics of Metarhizium anisopliae isolates important for the development of biological pesticides for the control of cattle ticks. Vet Parasitol 134:159–167. doi: 10.1016/j.vetpar.2005.07.010 PubMedCrossRefGoogle Scholar
  32. Polar P, Moore D, Kairo MTK, Ramsubhag A (2008) Topically applied myco-acaricides for the control of cattle ticks: Overcoming the challenges. Exp Appl Acarol 45 (this issue)Google Scholar
  33. Quesada-Moraga E, Maranhao EAA, Valverde-García P, Santiago-Álvarez C (2006) Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements, and toxicologic activity. Biol Control 36:274–287. doi: 10.1016/j.biocontrol.2005.09.022 CrossRefGoogle Scholar
  34. Rangel DEN, Braga GUL, Anderson AJ, Roberts DW (2005) Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. J Invertebr Pathol 88:116–125. doi: 10.1016/j.jip. 2004.11.007 PubMedCrossRefGoogle Scholar
  35. Samish M (2000) Biocontrol of ticks. Ann N Y Acad Sci 916:172–178PubMedCrossRefGoogle Scholar
  36. Samish M, Gindin G, Alekseev E, Glazer I (2001) Pathogenicity of entomopathogenic fungi to different developmental stages of Rhipicephalus sanguineus (Acari: Ixodidae). J Parasitol 87:1355–1359PubMedGoogle Scholar
  37. Schabel HG (1978) Percutaneous infection of Hylobius pales by Metarhizium anisopliae. J Invertebr Pathol 31:180–187. doi: 10.1016/0022-2011(78)90006-X CrossRefGoogle Scholar
  38. Scholte EJ, Knols BGJ, Samson RA, Takken W (2004) Entomopathogenic fungi for mosquito control: a review. J Insect Sci 4:19–43PubMedGoogle Scholar
  39. Shi WB, Feng MG (2004) Lethal effect of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces fumosoroseus on the eggs of Tetranychus cinnabarinus (Acari: Tetranychidae) with a description of a mite egg bioassay system. Biol Control 30:165–173. doi: 10.1016/j.biocontrol.2004.01.017 CrossRefGoogle Scholar
  40. Smith KE, Wall R, French NP (2000) The use of entomopathogenic fungi for the control of parasitic mites, Psoroptes spp. Vet Parasitol 92:97–105. doi: 10.1016/S0304-4017(00)00277-6 PubMedCrossRefGoogle Scholar
  41. Tang L-C, Hou RF (2001) Effects of environmental factors on virulence of the entomopathogenic fungus, Nomuraea rileyi, against the corn earworm, Helicoverpa armigera (Lep., Noctuidae). J Appl Entomol 125:243–248. doi: 10.1046/j.1439-0418.2001.00544.x CrossRefGoogle Scholar
  42. Tulloch M (1976) The genus Metarhizium. Trans Br Mycol Soc 66:407–411CrossRefGoogle Scholar
  43. Vidal C, Fargues J, Lacey LA (1997) Intraspecific variability of Paecilomyces fumosoroseus: effect of temperature on vegetative growth. J Invertebr Pathol 70:18–26. doi: 10.1006/jipa.1997.4658 CrossRefGoogle Scholar
  44. Wall R, Smith KE, Berriatua E, French NP (1999) Simulation analysis of the population dynamics of the mite, Psoroptes ovis, infesting sheep. Vet Parasitol 83:253–264. doi: 10.1016/S0304-4017(99)00062-X PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Lekimme
    • 1
  • C. Focant
    • 1
  • F. Farnir
    • 2
  • B. Mignon
    • 1
  • B. Losson
    • 1
  1. 1.Laboratory of Parasitology and Pathology of Parasitic Diseases B43, Department of Infectious and Parasitic Diseases, Faculty of Veterinary MedicineUniversity of LiègeLiegeBelgium
  2. 2.Department of Functional Sciences, Faculty of Veterinary MedicineUniversity of LiègeLiegeBelgium

Personalised recommendations