Tick infestation risk and Borrelia burgdorferi s.l. infection-induced increase in host-finding efficacy of female Ixodes ricinus under natural conditions

  • Michael K. FauldeEmail author
  • Richard G. Robbins


An investigation of the risk of human tick infestation, together with the prevalence of Borrelia burgdorferi s.l. infection, was conducted in a sylvatic habitat in western Germany to provide data needed for future risk-benefit evaluations of acaricides used for clothing impregnation. Additionally, data were collected on behavioural changes in Borrelia burgdorferi s.l.-infected adult female I. ricinus ticks and the possible impact of such changes on host-finding efficacy. The risk of I. ricinus-infestation was determined by collecting from the protective clothing of volunteers and by dragging in known tick-infested sites in the Kühkopf Mountain area, Koblenz, Germany, from June through October 2006. The overall tick infestation rate per person per hour was 7.4 ± 5.5, with the following sex- and stage-specific differences: males 0.32 ± 0.37, females 1.1 ± 1.2, nymphs 3.6 ± 4.4, larvae 2.4 ± 3.5. Concurrent dragging revealed an average 19.4 ± 16.2 times higher infestation rate as well as a markedly lower infection rate with borreliae in adult I. ricinus ticks when compared to ticks collected from exposed human volunteers. Although the difference in infection rates was statistically significant (P < 0.023) only in adult female ticks, our data indicate that B. burgdorferi s.l. infection may increase host-finding efficacy in adult I. ricinus. The overall exposure risk was 1.0 B. burgdorferi s.l.-infected ticks per person per hour of exposure, or 0.25 ticks per 100 m walking distance in the study area.


Ixodes ricinus Host-seeking activity Borrelia burgdorferi s.l. Human exposure risk 



We thank Marco Isack, Sabine Barz, Thorsten Lange, Bernd Bocklet and Dirk Hiller for their assistance with fieldwork. TibMolBiol, Berlin, kindly offered technical support, DNA from Borrelia burgdorferi s.s., and helpful guidance. We are also grateful to the Landesgesundheitsamt Baden-Württemberg, Stuttgart, Germany, for providing DNA samples from Borrelia afzelli and B. garinii.


  1. Alekseev AN, Dubinina HV (2000) Abiotic parameters and diel and seasonal activity of Borrelia-infected and uninfected Ixodes persulcatus (Acarina: Ixodidae). J Med Entomol 37:9–15PubMedGoogle Scholar
  2. Alekseev AN, Jensen PM, Dubinina HV, Smirnova LA, Makrouchina NA, Zharkov SD (2000) Peculiarities of behaviour of taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks (Acarina: Ixodidae) determined by different methods. Folia Parasitol 47:147–153PubMedGoogle Scholar
  3. Bellet-Edimo OR (1997) Importance de la transmission transstadiale et de la transmission transovarienne du spirochète Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) chez la tique Ixodes ricinus (Acari: Ixodidae) dans l`épidemiologie de la borréliose de Lyme. PhD thesis, University of Neuchâtel, Neuchâtel, SwitzerlandGoogle Scholar
  4. Carroll JF, Kramer M (2001) Different activities and footwear influence exposure to host-seeking nymphs of Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae). J Med Entomol 38:596–600PubMedGoogle Scholar
  5. Chavasse DC, Yap HH (1997) Chemical methods for the control of vectors and pests of public health importance. WHO/CTD/WHOPES/97.2. World Health Organization Distribution and Sales, GenevaGoogle Scholar
  6. Faulde M, Uedelhoven W (2006) A new clothing impregnation method for personal protection against ticks and biting insects. Int J Med Microbiol 296(Suppl 1):225–229PubMedCrossRefGoogle Scholar
  7. Faulde MK, Uedelhoven WM, Malerius M, Robbins RG (2006) Factory-based permethrin impregnation of uniforms: residual activity against Aedes aegypti and Ixodes ricinus in battle dress uniforms worn under field conditions, and cross contamination during the laundering and storage process. Mil Med 171:472–477PubMedGoogle Scholar
  8. Ferquel E, Garnier M, Marie J, Bernede-Bauduin C, Baranton G, Perez-Eid C, Postic D (2006) Prevalence of Borrelia burgdorferi sensu lato and Anaplasmataceae members in Ixodes ricinus ticks in Alsace, a focus of lyme borreliosis endemicity in France. Appl Environ Microbiol 72:3074–3078PubMedCrossRefGoogle Scholar
  9. Gern L, Humair P-F (2002) Ecology of Borrelia burgdorferi sensu lato in Europe. In: Gray JS, Kahl O, Lane RS, Stanek G (eds) Lyme borreliosis—biology, epidemiology and control. CABI International, pp 149–174Google Scholar
  10. Ginsberg HS, Faulde MK Ticks. In: Urban pests and health. WHO, European Centre for Environment and Health, Bonn Office, Bonn, Germany (in press)Google Scholar
  11. Kipp S, Dorn W, Wilske B, Fingerle V (2006) Heterogeneity in prevalence and genetic diversity of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in different localities in Thuringia, Germany. Int J Med Microbiol 296(Suppl 1):119–121Google Scholar
  12. Lane RS, Steinlein DB, Mun J (2004) Human behaviors elevating exposure to Ixodes pacificus (Acari: Ixodidae) nymphs and their associated bacterial zoonotic agents in a hardwood forest. J Med Entomol 41:239–248PubMedGoogle Scholar
  13. Lieboldt T (2007) Anwendung der Biostoffverordnung bei Borrelienexposition: Auswirkungen auf den Dienstbetrieb der Bundeswehr. Wehrmed Wehrpharm 31:66–69Google Scholar
  14. Mencke N (2006) Acaricidal and repellent properties of permethrin, its role in reducing transmission of vector-borne pathogens. Parassitologia 48:130–140Google Scholar
  15. Rauter C, Oehme R, Diterich I, Engele M, Hartung T (2002) Distribution of clinically relevant Borrelia genospecies in ticks assessed by a novel, single-run, Real-Time PCR. J Clin Microbiol 40:36–43PubMedCrossRefGoogle Scholar
  16. Rey JL (1998) Moyen actuel de protection contre les maladies transmises par les tiques. Med Mal Infect 28:393–395CrossRefGoogle Scholar
  17. Rossbach B, Scharnbacher J, Heinrich K, Mross KG, Letzel S, Egerer E (2005) Influence of permethrin impregnated uniforms to the internal pyrethroid exposure of soldiers during deployment. Arbeitsmed Sozialmed Praeventivmed 3:127Google Scholar
  18. Rothmaler W (1984) Exkursionsflora, vol 2. Volk und Wissen Volkseigener Verlag, Berlin, pp 44–54Google Scholar
  19. Schreck CE, Mount GA, Carlson DA (1982) Pressurized sprays of permethrin on clothing for personal protection against the lone star tick (Acari: Ixodidae). J Econ Entomol 75:1059–1061PubMedGoogle Scholar
  20. Snodgrass HL (1992) Permethrin transfer from treated cloth to the skin surface: potential for exposure to humans. J Toxicol Environ Health 35:91–105PubMedCrossRefGoogle Scholar
  21. Süss J, Schrader C (2004) Durch Zecken übertragene humanpathogene und bisher als apathogen geltende Mikroorganismen in Europa. Teil I: Zecken und Viren. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 47:392–404CrossRefGoogle Scholar
  22. Süss J, Fingerle V, Hunfeld K-P, Schrader C, Wilske B (2004) Durch Zecken übertragene humanpathogene und bisher als apathogen geltende Mikroorganismen in Europa. Teil II: Bakterien, Parasiten und Mischinfektionen. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 47:470–486CrossRefGoogle Scholar
  23. WHO (2001a) Vectors of diseases: hazards and risks for travellers—Part I. WER 25:189–194Google Scholar
  24. WHO (2001b) Vectors of diseases: hazards and risks for travellers—Part II. WER 26:201–203Google Scholar
  25. Young D, Evans S (1998) Safety and efficacy of DEET and permethrin in the prevention of arthropod attack. Mil Med 163:1–7Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Medical Entomology/ZoologyCentral Institute of the Federal Armed Forces Medical ServiceKoblenzGermany
  2. 2.Defense Pest Management Information Analysis Center, Armed Forces Pest Management BoardWalter Reed Army Medical CenterWashingtonUSA

Personalised recommendations