Experimental and Applied Acarology

, Volume 42, Issue 4, pp 225–238 | Cite as

Host race formation in the Acari

  • Sara Magalhães
  • Mark R. Forbes
  • Anna Skoracka
  • Masahiro Osakabe
  • Christine Chevillon
  • Karen D. McCoy
Review Paper

Abstract

Host race formation generates diversity within species and may even lead to speciation. This phenomenon could be particularly prevalent in the Acari due to the often intimate interaction these species have with their hosts. In this review, we explore the process of host race formation, whether it is likely to occur in this group and what features may favour its evolution. Although few studies are currently available and tend to be biased toward two model species, results suggest that host races are indeed common in this group, and more likely to occur when hosts are long-lived. We discuss future directions for research on host-associated adaptations in this group of organisms and the potential relevance of host race formation for the biodiversity of mites and ticks.

Keywords

Host race formation Specialization Molecular markers Experimental evolution Genetic diversity Local adaptation 

References

  1. Agrawal AA (2000) Host-range evolution: Adaptation and trade-offs in fitness of mites on alternative hosts. Ecology 81:500–508CrossRefGoogle Scholar
  2. Bailly X, Migeon A, Navajas M (2004) Analysis of microsatellite variation in the spider mite pest Tetranychus turkestani (Acari: Tetranychidae) reveals population genetic structure and raises questions about related ecological factors. Biol J Linnean Soc 82:69–78CrossRefGoogle Scholar
  3. Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572PubMedCrossRefGoogle Scholar
  4. Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: Moving beyond controversy? Annu Rev Entomol 47:773–815PubMedCrossRefGoogle Scholar
  5. Bohonak AJ (1999) Effect of insect-mediated dispersal on the genetic structure of postglacial water mite populations. Heredity 82: 451–461PubMedCrossRefGoogle Scholar
  6. Brossard M, Wikel SK (2004) Tick immunobiology. Parasitology 129 (Suppl):S161–S176PubMedCrossRefGoogle Scholar
  7. Castagnoli M (1996) Ornamental coniferous and shaded trees. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control (World Crop Pests). Elsevier Science B.V., Amsterdam, pp 661–669Google Scholar
  8. De Lillo E, Duso C (1996) Currants and berries. In: Lindquist EE, Sabelis MW, Bruin J (eds) Eriophyoid mites: their biology, natural enemies and control (World Crop Pests). Elsevier Science B.V., Amsterdam, pp 583–591Google Scholar
  9. De Meeûs T, McCoy KD, Prugnolle F, Chevillon C, Durand P, Hurtrez-Boussès S, Renaud F (2007) Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect Genet Evol 7(2):308–332Google Scholar
  10. Diehl SR, Bush GL (1984) An evolutionary and applied perspective of insect biotypes. Annu Rev Entomol 29:471–504CrossRefGoogle Scholar
  11. Dres M, Mallet J (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Phil Trans R Soc Lond B 357:471–492CrossRefGoogle Scholar
  12. Edwards DD, Labhart M (2000) Genetic differences among host-associated populations of water mites (Acari: Unionicolidae: Unionicola): allozyme variation supports morphological differentiation. J Parasitol 86:1008–1011PubMedGoogle Scholar
  13. Falco RC, Fish D (1991) Horizontal movement of adult Ixodes dammini (Acari: Ixodidae) attracted to CO2-baited traps. J Med Entomol 28:726–729PubMedGoogle Scholar
  14. Filchak KE, Roethele JB, Feder JL (2000) Natural selection and sympatric divergence in the apple maggot Rhagoletis pomonella. Nature 407:739–742PubMedCrossRefGoogle Scholar
  15. Fry JD (1990) Trade-offs in fitness on different hosts—Evidence from a selection experiment with a phytophagous mite. Am Nat 136:569–580CrossRefGoogle Scholar
  16. Funk DJ, Filchak KE, Feder JL (2002) Herbivorous insects: model systems for the comparative study of speciation. Ecology 116:251–267Google Scholar
  17. Futuyma DJ (1976) Food plant specialization and environmental predictability in Lepidoptera. Am Nat 110:285–292CrossRefGoogle Scholar
  18. Gandon S, Michalakis Y (2002) Local adaptation, evolutionary potential and host-parasite coevolution: interactions between migration, mutation, population size and generation time. J Evol Biol 15:451–462CrossRefGoogle Scholar
  19. Garcia-dorado A, Martin P, Garcia N (1991) Soft selection and quantitative genetic variation—A laboratory experiment. Heredity 66:313–323PubMedGoogle Scholar
  20. Giorgi MS, Arlettaz R, Guillaume F, Nussle S, Ossola C, Vogel P, Christe P (2004) Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia 138:648–654PubMedCrossRefGoogle Scholar
  21. Gotoh T, Bruin J, Sabelis MW, Menken SBJ (1993) Host race formation in Tetranychus urticae—genetic differentiation, host-plant preference, and mate choice in a tomato and a cucumber strain. Entomol Exp Appl 68:171–178CrossRefGoogle Scholar
  22. Gould F (1979) Rapid host range evolution in a population of the phytophagous mite Tetranychus urticae Koch. Evolution 33:791–802CrossRefGoogle Scholar
  23. Groman JD, Pellmyr O (2000) Rapid evolution and specialization following host colonization in a yucca moth. J Evol Biol 13:223–236CrossRefGoogle Scholar
  24. Groot TVM, Janssen A, Pallini A, Breeuwer JAJ (2005) Adaptation in the asexual false spider mite Brevipalpus phoenicis: evidence for frozen niche variation. Exp Appl Acarol 36:165–176PubMedCrossRefGoogle Scholar
  25. Hedrick PW (1986) Genetic-polymorphism in heterogeneous environments—A decade later. Annu Rev Ecol Syst 17:535–566CrossRefGoogle Scholar
  26. Jaenike J (1981) Critera for ascertaining the existence of host races. Am Nat 117:830–834CrossRefGoogle Scholar
  27. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429CrossRefGoogle Scholar
  28. Kassen R (2002) The experimental evolution of specialists, generalists, and the maintenance of diversity. J Evol Biol 15:173–190CrossRefGoogle Scholar
  29. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241CrossRefGoogle Scholar
  30. Kennedy GG, Smitley DR (1985) Dispersal. In: Helle W, Sabelis MW (eds) Spider mites—their biology, natural enemies and control. Elsevier, Amsterdam, pp 233–242Google Scholar
  31. Kirkpatrick M, Ravigne V (2002) Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22–S35CrossRefPubMedGoogle Scholar
  32. Koffi BB, de Meeûs T, Barré N, Durand P, Arnathau C, Chevillon C (2006) Founder effects, inbreeding and effective sizes in the Southern cattle tick: the effect of transmission dynamics and implications for pest management. Mol Ecol 15:4603–4611PubMedCrossRefGoogle Scholar
  33. Lajeunesse MJ, Forbes MR, Smith BP (2004) Species and sex biases in ectoparasitism of dragonflies by mites. Oikos 106:501–508CrossRefGoogle Scholar
  34. Lampo M, Rangel Y, Mata A (1998) Population genetic structure of a three-host tick, Amblyomma dissimile, in eastern Venezuela. J Parasitol 84:1137–1142PubMedCrossRefGoogle Scholar
  35. Lesna I, Sabelis MW (1999) Diet-dependent female choice for males with ‘good genes’ in a soil predatory mite. Nature 401:581–584CrossRefGoogle Scholar
  36. Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333CrossRefGoogle Scholar
  37. Magalhães S, Fayard J, Janssen A, Olivieri I (2007) Adaptation in a spider mite population after long-term evolution on a single host plant. J Evol Biol doi: 10.1111/j.1420-9101.2007.01365.xGoogle Scholar
  38. McCoy KD, Boulinier T, Tirard C, Michalakis Y (2001) Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. J Evol Biol 14:395–405CrossRefGoogle Scholar
  39. McCoy KD, Chapuis E, Tirard C, Boulinier T, Michalakis Y, Le Bohec C, Le Maho Y, Gauthier-Clerc M (2005) Recurrent evolution of host-specialized races in a globally distributed parasite. Proc R Soc Lond Ser B-Biol Sci 272:2389–2395CrossRefGoogle Scholar
  40. Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557CrossRefGoogle Scholar
  41. Navajas M (1998) Host plant associations in the spider mite Tetranychus urticae (Acari: Tetranychidae): insights from molecular phylogeography. Exp Appl Acarol 22:201–214CrossRefGoogle Scholar
  42. Navajas M, Perrot-Minnot MJ, Lagnel J, Migeon A, Bourse T, Cornuet JM (2002) Genetic structure of a greenhouse population of the spider mite Tetranychus urticae: spatio-temporal analysis with microsatellite markers. Ins Mol Biol 11:157–165CrossRefGoogle Scholar
  43. Nishimura S, Hinomoto N, Takafuji A (2005) Gene flow and spatio-temporal genetic variation among sympatric populations of Tetranychus kanzawai (Acari: Tetranychidae) occurring on different host plants, as estimated by microsatellite gene diversity. Exp Appl Acarol 35:59–71PubMedCrossRefGoogle Scholar
  44. Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719PubMedGoogle Scholar
  45. Oldfield GN (2005) Biology of Gall-inducing Acari. In: Raman A, Schaefer CW, Withers TM (eds) Biology, ecology and evolution of gall-inducing arthropods. Science Publishers, Enfield, USA, pp 35–57Google Scholar
  46. Osakabe M (1993) Divergence of the northern and southwestern populations of Panonychus mori Yokoyama (Acari, Tetranychidae). In Japan in host-range and reproductive compatibility. Appl Entomol Zoolog 28:189–197Google Scholar
  47. Osakabe M, Komazaki S (1996) Host range segregation and reproductive incompatibility among Panonychus citri populations infesting Osmanthus trees and other host plants. Appl Entomol Zoolog 31:397–406Google Scholar
  48. Pegler KR, Evans L, Stevens JR, Wall R (2005) Morphological and molecular comparison of host-derived populations of parasitic Psoroptes mites. Med Vet Entomol 19:392–403PubMedCrossRefGoogle Scholar
  49. Radwan J (2004) Effectiveness of sexual selection in removing mutations induced with ionizing radiation. Ecol Lett 7:1149–1154CrossRefGoogle Scholar
  50. Ravigne V, Olivieri I, Dieckmann U (2004) Implications of habitat choice for protected polymorphisms. Evol Ecol Res 6:125–145Google Scholar
  51. Rice WR (1987) Speciation via habitat specialization: the evolution of reproductive isolation as a correlated character. Evol Ecol 1:301–314CrossRefGoogle Scholar
  52. Skoracka A, Kuczynski L (2006) Is the cereal rust mite, Abacarus hystrix really a generalist? Testing colonization performance on novel hosts. Exp Appl Acarol 38:1–13PubMedCrossRefGoogle Scholar
  53. Sonenshine DE (1991) Biology of ticks, vol 1. Oxford University Press, OxfordGoogle Scholar
  54. Spichtig M, Kawecki TJ (2004) The maintenance (or not) of polygenic variation by soft selection in heterogeneous environments. Am Nat 164:70–84PubMedCrossRefGoogle Scholar
  55. Tsagkarakou A, Navajas M, Lagnel J, Pasteur N (1997) Population structure in the spider mite Tetranychus urticae (Acari: Tetranychidae) from Crete based on multiple allozymes. Heredity 78:84–92PubMedCrossRefGoogle Scholar
  56. Tsagkarakou A, Navajas M, Papaioannou-Souliotis P, Pasteur N (1998) Gene flow among Tetranychus urticae (Acari: Tetranychidae) populations in Greece. Mol Ecol 7:71–79CrossRefGoogle Scholar
  57. Tsagkarakou A, Navajas M, Rousset F, Pasteur N (1999) Genetic differentiation in Tetranychus urticae (Acari: Tetranychidae) from greenhouses in France. Exp Appl Acarol 23:365–378CrossRefGoogle Scholar
  58. Tucic N, Milanovic D, Mikuljanac S (1995) Laboratory evolution of host plant utilization in the bean weevil (Acanthoscelides obtectus). Genet Sel Evol 27:491–502Google Scholar
  59. Vala F, Egas M, Breeuwer JAJ, Sabelis MW (2004) Wolbachia affects oviposition and mating behaviour of its spider mite host. J Evol Biol 17:692–700PubMedCrossRefGoogle Scholar
  60. Walter DE, Proctor HC (1999) Mites: ecology, evolution and behaviour. University of New South Wales Press and CAB InternationalGoogle Scholar
  61. Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, Morgan M, Currie BJ, Kemp DJ (2004) Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parasit 34:839–849CrossRefGoogle Scholar
  62. Weeks AR, Van Opijnen T, Breeuwer JAJ (2000) AFLP fingerprinting for assessing intraspecific variation and genome mapping in mites. Exp Appl Acarol 24:775–793PubMedCrossRefGoogle Scholar
  63. Whitlock MC (1996) The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasiticity and niche breadth. Am Nat 148:S65–S77CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Sara Magalhães
    • 1
    • 2
  • Mark R. Forbes
    • 3
  • Anna Skoracka
    • 4
  • Masahiro Osakabe
    • 5
  • Christine Chevillon
    • 6
  • Karen D. McCoy
    • 6
  1. 1.Instituto Gulbenkian de CiênciaEvolutionary Genetics GroupOeirasPortugal
  2. 2.Laboratoire de Génétique et Environement, Institut des Sciences de l’EvolutionUniversité de Montpellier IIMontpellierFrance
  3. 3.Department of BiologyCarleton UniversityOttawaCanada
  4. 4.Department of Animal Taxonomy and Ecology, Faculty of BiologyAdam Mickiewicz UniversityPoznanPoland
  5. 5.Laboratory of Ecological Information, Graduate School of AgricultureKyoto UniversityKyotoJapan
  6. 6.Génétique et Evolution des Maladies InfectieusesUMR CNRS/IRD 2724MontpellierFrance

Personalised recommendations