Advertisement

Experimental & Applied Acarology

, Volume 40, Issue 3–4, pp 259–270 | Cite as

Genetic variation of ticks (Ixodes ricinus L.) in the Lithuanian and Norwegian populations

  • A. PaulauskasEmail author
  • J. Radzijevskaja
  • O. Rosef
  • J. Turcinaviciene
  • D. Ambrasiene
  • D. Makareviciute
Article

Abstract

RAPD markers were used to measure the genetic diversity of 119 individuals of Ixodes ricinus collected from Lithuania and Norway. The samples were analysed within and also between the populations. We analysed 74 loci in each of 6 populations. Our results show high levels of diversity within the populations. The percentage of polymorphic loci of the six analysed populations: Birzai, Vilnius, Kretinga, Tjore, Kjosvik and Odderoya were 68.9%, 58.1%, 78.38%, 62.2%, 44.6% and 68.9%, respectively. The percentage of polymorphic loci in the Lithuanian populations was 93.2%, and in the Norwegian populations 81.08%. The genetic distance ranged from 0.019 to 0.079 within Norwegian populations and from 0.005 to 0.0967 within Lithuanian populations and between the countries from 0.022 to 0.146. The genetic variation of I. ricinus among Norwegian populations was lower than among Lithuanian populations. The highest part of genetic variation in I. ricinus ticks depends on variation within Kretinga (Lithuania) and Odderoya (Norway) populations situated in coastal areas where many migratory and sea birds are aggregated.

Keywords

Tick Ixodes ricinus RAPD markers Genetic variation 

References

  1. Ambrasienė D, Turčinavičienė J, Vaščilo I, Žygutienė M (2004) The prevalence of Borrelia burgdorferi in Ixodes ricinus ticks detected by PCR in Lithuania. Veterinarija ir Zootechnika 28(50):45–47Google Scholar
  2. Ames A, Hutcheson H, Estrada-Peña A, Gray J, Black W (2000) Genetic variation among western and central European populations of the sheep tick, Ixodes ricinus L. (Acari: Ixodidae), as shown by PVR-SSCP analysis of 16S mitochondrial rDNA. In: Donoghue A (ed) Proceedings of the 5th International Symposium on ectoparasites of pets. Fort Collins, Co, USAGoogle Scholar
  3. Bagdonas J, Nekrošienė N, Bulsienė I (2003) Gyvulių erkinio encefalito seroepizootiniai tyrimai. Veterinarija ir Zootechnika. 24(46):5–13Google Scholar
  4. Balčiauskas L, Trakimas G, Juškaitis R et al (1999) Lietuvos žinduolių, varliagyvių ir roplių atlasas. Antras papildytas leidimas (Atlas of Lithuanian mammals, amphibians and reptiles. 2nd ed). Akstis, VilniusGoogle Scholar
  5. Comstedt P, Bergstrom S, Olsen B, Garpmo U, Marjavaara L, Mejlon H, Barbour A, Bunikis J (2006) Migratory passerine birds as reservoirs of Lyme Borreliosis in Europe. Emerg Infect Dis 12(7):1087–1095PubMedGoogle Scholar
  6. Delaye C, Beati L, Aeschimann A, Renaud F, De Meeus T (1997) Population genetic structure of Ixodes ricinus in Switzerland from allozymic data: no evidence of divergence between nearby sites. Int J Parasitol 27:769–773PubMedCrossRefGoogle Scholar
  7. Delaye C, Aeschlimann A, Renaud F, Rosenthal B, De Meeus T (1998) Isolation and characterisation of microsatellite markers in the Ixodes ricinus complex (Acari: lxodidae). Mol Ecol 7:357–363CrossRefGoogle Scholar
  8. Estrada-Peña A, Gray J, Kahl O (1996) Variability in cuticular hydrocarbons and phenotypic discrimination of Ixodes ricinus (Acarina: Ixodidae) from Europe. Exp Appl Acarol 20:457–467CrossRefGoogle Scholar
  9. Filippova N (1977) Ixodovye kleshi podsem. Ixodinae (Ixodid ticks of the subfamily Ixodinae). Fauna SSSR. Nauka, LeningradGoogle Scholar
  10. Gray J (1998) The ecology of ticks transmitting Lyme borreliosis. Exp Appl Acarol 22:249–258CrossRefGoogle Scholar
  11. Gray J (2002) Biology of Ixodes species ticks in relation to tick-borne zoonoses. Wien Klin Wochenschr 114:473–478PubMedGoogle Scholar
  12. Healy J (1979) Phosphoglucomutase polymorphism in the tick Ixodes ricinus. Parasitology 48:7–17CrossRefGoogle Scholar
  13. Hoy M (1994) Insect molecular genetics: an introduction to principles and applications. Academic Press, San DiegoGoogle Scholar
  14. Kain D, Sperling F, Daly H, Lane R (1999) Mitochondrial DNA sequence variation in Ixodes pacificus (Acari: Ixodidae). Heredity 83:378–386PubMedCrossRefGoogle Scholar
  15. Kurtenbach K, De Michelis S, Sewell H-S, Etti S, Schafer S, Hails R, Collares-Pereira M, Santos-Reis M, Hannicova K, Labuda M, Bormane A, Donaghy M (2001) Distinct combinations of Borrelia burgdorferi sensu lato genospecies found in individual questing ticks from Europe. Appl Environ Microbiol 67(10):4926–4929PubMedCrossRefGoogle Scholar
  16. Lan M, Sheng W, Huang C, Gu X, Jiang Y, Zhao Y, Lu W (1996) RAPD-PCR method for detecting DNA polymorphism in Boophilus microplus (Acari: lxodidae). Syst Appl Acarol 1:11–14Google Scholar
  17. Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:381–398Google Scholar
  18. Lynch M, Milligan B (1994) Analysis of population genetic structure within RAPD markers. Mol Ecol 3:91–99PubMedGoogle Scholar
  19. Mehl R (1983) The distribution and host relations of Norwegian ticks (Acari, Ixodides). Fauna Norvegica Serie B. Norw J Entomol 30:46–51Google Scholar
  20. Mehl R, Lid G, Michaelsen J (1984) Ticks (Acari, Ixodides) on migratory birds in Norway. Fauna Norvegica Serie B. Norw J Entomol 31:46–58Google Scholar
  21. Mehl R, Sandven P, Braathen L (1987) The sheep tick Ixodes ricinus. Vector of spirochaetoses. Tidsskr Nor Laege-foren. 107:1642–1644, 1651Google Scholar
  22. Navajas M, Fenton B (2000) The application of molecular markers in the study of diversity in acarology: a review. Exp Appl Acarol 24:751–774PubMedCrossRefGoogle Scholar
  23. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  24. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  25. Nei M, Li W (1979) Mathematical model for studying genetic variance in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  26. Norris D, Klompen J, Kierans J, Black IV W (1996) Population genetic of Ixodes scapularis (Acari: Ixodidae), based on mitochondrial 16S and 12S genes. J Med Entomol 33(1):78–89PubMedGoogle Scholar
  27. Oliver J (1977) Cytogenetics of mites and ticks. Annu Rev Entomol 22:407–429PubMedCrossRefGoogle Scholar
  28. Olsen B (2003) The role of birds in the ecology and epidemiology of Lyme borreliosis and ehrlichiosis. Review series. Infect Dis 2:4–7Google Scholar
  29. Patapavičius R (1990) Bird migration studies in Lithuania by means of ringing. Baltic Birds 5(2):65–68Google Scholar
  30. Patapavičius R (1998) Looking forward to 70-year anniversary of bird ringing in Lithuania: overview of some results and perspectives. Acta Zoologica Lithuanica. Ornithologia 8:79–84Google Scholar
  31. Patapavičius R (2006) An overview of birds ringing in Lithuania during 75 years (1929–2003). In: Grigonis R, Oranskyte I (eds) Kaunas zoological museum of Tadas Ivanauskas, vol 1. Lutute, Kaunas, pp 52–101Google Scholar
  32. Poucher K, Hutcheson J, Keirans J, Durden L, Black W (1999) Molecular genetic key for the identification of 17 Ixodes species of the United States (Acari: Ixodidae): a methods model. J Parasitol 85(4):623–629PubMedCrossRefGoogle Scholar
  33. Radzijevskaja J, Indriulyte R, Paulauskas A, Ambrasiene D, Turcinaviciene J (2005) Genetic polymorphism study of Ixodes ricinus L. populations in Lithuania using RAPD markers. Acta Zoologica Lituanica 15(4):341–348Google Scholar
  34. Rosenberg N, Nordborg M (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nat Rev Genet 3:380–390PubMedCrossRefGoogle Scholar
  35. Skarpaas T, Ljostad U, Sundoy A (2004) First human cases of tickborne encephalitis, Norway. Emerg Infect Dis 10(12):2241–2243PubMedGoogle Scholar
  36. Stańczak J, Racewicz M, Kubica-Biernat B, Kruminis-Łozowska W, Dąbrowski J, Adamczyk A, Markowska M (1999) Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks (Acari, Ixodidae) in different Polish woodlands. Ann Agric Environ Med 6:127–132PubMedGoogle Scholar
  37. Stuen S, Van De Pol I, Bergstrom K, Schouls L (2002) Identification of Anaplasma phagocytophila (formerly Ehrlichia phagocytophila) variants in blood from sheep in Norway. J Clin Microbiol 40(9):3192–3197PubMedCrossRefGoogle Scholar
  38. Ullmann A, Piesman J, Dolan M, Black IV W (2003) A preliminary linkage map of the hard tick, Ixodes scapularis. Insect Mol Biol 12(2):201–210PubMedCrossRefGoogle Scholar
  39. Van de Peer Y, De Wacher R (1994) Treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Applic Biosci 10:569–570Google Scholar
  40. Williams J, Kubelik A, Livak K, Rafalski J, Tingey S (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535PubMedCrossRefGoogle Scholar
  41. Xu G, Fang Q, Keirans J, Durden L (2003) Molecular phylogenetic analyses indicate that the Ixodes ricinus complex is a paraphyletic group. J Parasitol 89(3):452–457PubMedCrossRefGoogle Scholar
  42. Yang Y, Zhao H, Di Wu J, Zhang J, Shi Z (2004) Random amplified polymorphic DNA analysis of the genomes among 7 species of ticks. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 22(4):223–226PubMedGoogle Scholar
  43. Yen F, Boyle T (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157Google Scholar
  44. Žalakevičius M, Švažas S, Stanevičius V, Vaitkus G (1995) Bird migration and wintering in Lithuania. A monograph. Institute of Ecology, Vilnius. Acta Zoologica Lituanica. Ornithologia, vol 2, pp 252Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • A. Paulauskas
    • 1
    Email author
  • J. Radzijevskaja
    • 1
  • O. Rosef
    • 2
  • J. Turcinaviciene
    • 3
  • D. Ambrasiene
    • 1
  • D. Makareviciute
    • 3
  1. 1.Department of BiologyVytautas Magnus UniversityKaunasLithuania
  2. 2.Telemark University CollegeProsgrunnNorway
  3. 3.Vilnius UniversityVilniusLithuania

Personalised recommendations