Experimental & Applied Acarology

, Volume 39, Issue 3–4, pp 177–194 | Cite as

Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: Oribatida)

  • Günther Raspotnig


The multicomponent oil gland secretion of Collohmannia gigantea, a middle-derivative mixonomatan oribatid mite, is demonstrated to possess alarm pheromonal and allomonal properties. Four components of the secretion, namely the monoterpenes neryl formate, neral, geranial and the aromatic 2-hydroxy- 6-methyl-benzaldehyde (2,6-HMBD), showed moderate to strong alarm pheromonal activity in adult mites. Naturally elicited response is due to neral (about 50% of the secretion) and probably 2,6-HMBD (only 5% of the secretion, but strong alarm pheromonal activity). This is the second report of an alarm pheromone in Oribatida. Tridecane and pentadecane (=the hydrocarbon fraction of the secretion) did not evoke evident behavioural reactions, and most likely serve as solvents and spreading agents for the pheromonal-active components. Alarm reactions were characterized by a short recognition phase (waving movements with legs I), followed by shrinking back and panic escape from the scent source. In addition, all six components of the oil gland secretion, including the hydrocarbons, exhibited strong allomonal properties against a model oribatid predator, the scydmaenid beetle, Euconnus (Tetramelus) oblongus. Considering the widespread semiochemical properties of oil gland secretions in astigmatid mites (=a highly derivative oribatid group), these results furnish evidence for a phylogenetically early origin of defensive and communicative roles of oil gland secretions in oribatids. These roles include alarm communication, defence and the production of anti-fungal compounds.


Alarm pheromones allomones Collohmannia oil glands Oribatida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Austrian Science Foundation (FWF), project number P18486, and by a grant from the Austrian Theodor-Körner-Fonds. I further thank Prof.␣Dr.␣Reinhart Schuster and Dr. Günther Krisper, both at the Institute of Zoology, Karl- Franzens-University of Graz, Austria, for critically reading the manuscript.


  1. Akiyama M, Sakata T, Mori N, Kato T, Amano H, Kuwahara Y (1997) Neryl formate, the alarm pheromone of Rhizoglyphus setosus Manson (Acarina: Acaridae) and the common component among four Rhizoglyphus mites. Appl Ent Zool 32:75–79Google Scholar
  2. Alberti G, Coons LB (1999) Mites. In: Harrison FW, Foelix RF (eds) Microscopic Anatomy of Invertebrates, vol. 8C. Chelicerate Arthropoda. Wiley-Liss, New York, pp 515–1265Google Scholar
  3. Alberti G, Norton R, Adis J, Fernandez NA, Franklin E, Kratzmann M, Moreno AI, Weigmann G, Woas S (1997) Porose integumental organs of oribatid mites (Acari, Oribatida). 2. Fine structure. Zoologica 146:33–114Google Scholar
  4. Baker GT (1985) Morphology of the solenidia and famulus on tarsi I and II of Rhizoglyphus robini Claparede (Acaridae). Zool Jb Anat 113:85–89Google Scholar
  5. Balogh J, Balogh P (1992) The oribatid mites genera of the world, Vol. I & II. Hungarian National Museum Press, BudapestGoogle Scholar
  6. Bettini S (eds). (1978). Arthropod venoms Handb. Exp. Pharmakol., vol 48. Springer, BerlinGoogle Scholar
  7. Blum MS (1971a) Dimensions of chemical sociality. In: Tahori AS (eds) Chemical releasers in insects. Gordon & Breach, New York, pp 147–162Google Scholar
  8. Blum MS (1971b). Arthropod defensive secretions. In: Tahori AS (eds) Chemical releasers in insects. Gordon & Breach, New York, pp 163–176Google Scholar
  9. Blum MS (1981) Chemical defenses of arthropods. Academic Press, New YorkGoogle Scholar
  10. Blum MS (1985) Alarm pheromones. In: Blum MS (eds) Fundamentals of insect physiology. John Wiley & Sons, New York, pp. 535–579Google Scholar
  11. Blum MS, Brand JM (1972) Social insect pheromones: their chemistry and function. Am Zool 12:553–576Google Scholar
  12. Brand JM, Young JC, Silverstein RM (1979) Insect pheromones: a critical review of recent advances in their chemistry, biology and application. In: Progress in the Chemistry of Organic Natural Products, vol 37. Springer, Berlin, pp 1–190Google Scholar
  13. Brody AR, Wharton GW (1970) Dermatophagoides farinae: ultrastructure of lateral opisthosomal dermal glands. Trans Am Microsc Soc 89:499–513PubMedCrossRefGoogle Scholar
  14. Calam DH, Youdeowei A (1968) Identification and functions of secretion from the posterior scent gland of fifth instar larva of the bug Dysdercus intermedius. J Insect Physiol 14:1147–1158CrossRefGoogle Scholar
  15. Chatterjea JN, Singh KRRP, Jha IS, Prasad Y, Shaw SC (1986) Synthesis of gerberinol I. Ind J Chem 25B: 796–798Google Scholar
  16. Cole LK, Blum MS, Roncadori RW (1975) Antifungal properties of the insect pheromones citral, 2-heptanone and 4-methyl-3-heptanone. Mycologia 67:701–708PubMedCrossRefGoogle Scholar
  17. DeLillo E, Nuzzaci G, Di Palma A (2004) Sensorial structures in mites and future perspectives of research. In: Weigmann G, Alberti G, Wohltmann A, Ragusa S (eds) Phytophaga XIV. Acarine biodiversity in the natural and human sphere. Tipolitografia Luxograph, Palermo, pp 59–81Google Scholar
  18. Gangrade SK, Shrivastava RD, Sharma OP, Moghe MN, Trivedi KC (1989) Evaluation of antibacterial properties of essential oils of Ocimum species. Indian Perfumer 33:130–136Google Scholar
  19. Grandjean F (1966) Collohmannia gigantea Selln. Premiere partie. Acarologia 8:328–357Google Scholar
  20. Gunawardena NE, Herath HMWKB (1991) Significance of medium chain n-alkanes as accompanying compounds in hemipteran defensive secretions: an investigation based on the defensive secretion of Cordius janus. J Chem Ecol 17:2449–2458CrossRefGoogle Scholar
  21. Hiraoka H, Mori N, Okabe K, Nishida R, Kuwahara Y (2002) Neral [3,7-dimethyl-(Z)-2,6-octadienal]: the female sex pheromone of an acarid mite, Histiogaster sp. (Acari: Acaridae). J Acarol Soc Jpn 11:17–26CrossRefGoogle Scholar
  22. Hölldobler B, Wilson EO (1990) The Ants. Springer, Berlin, 732 ppGoogle Scholar
  23. Kitamura C, Wakamura S, Takahashi S (1984) Identification and functions of ventral glands secretion of some Heteroptera. Appl Ent Zool 19:33–41Google Scholar
  24. Kou R, Tang DS, Chow YS (1989) Alarm pheromone of pentatomid bug, Erthesina fullo Thunberg (Hemiptera: Pentatomidae). J Chem Ecol 15:2695–2702CrossRefGoogle Scholar
  25. Kuwahara Y (1991) Pheromone studies on astigmatid mites – alarm, aggregation and sex. In:␣Dusbabek F, Bukva V (eds) Modern Acarology, Vol. I. SPB Academic Publishing, The Hague, pp 43–52Google Scholar
  26. Kuwahara Y (2004) Chemical ecology of astigmatid mites. In: Carde RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 76–109Google Scholar
  27. Kuwahara Y, Sakuma L (1982) Pheromone study on acarid mites. IX Synthesis of alarm pheromone analogues of the mold mite, Tyrophagus putrescentiae, and their biological activities. Agr Biol Chem 46:1855–1860Google Scholar
  28. Kuwahara Y, Ishii S, Fukami H (1975) Neryl formate: alarm pheromone of the cheese mite, Tyrophagus putrescentiae (Schrank) (Acarina, Acaridae). Experientia 31:1115–1116CrossRefGoogle Scholar
  29. Kuwahara Y, Shibata C, Akimoto K, Kuwahara M, Suzuki T (1988) Pheromone study on acarid mites. XIII. Identification of neryl formate as an alarm pheromone from the bulb mite, Rhizoglyphus robini (Acarina: Acaridae). Appl Ent Zool 23:76–80Google Scholar
  30. Kuwahara Y, Leal WS, Nakano Y, Kaneko Y, Nakao H, Suzuki T (1989) Pheromone study on astigmatid mites. XXII. Identification of the alarm pheromone of the acarid mite, Tyrophagus neiswanderi and species specificities of alarm pheromones among four species of the same genus. Appl Ent Zool 24:424–429Google Scholar
  31. Kuwahara Y, Satou T, Suzuki T (1991a) Geranial as the alarm pheromone of Histiostoma laboratorium Hughes (Astigmata: Histiostomidae). Appl Ent Zool 26:501–504Google Scholar
  32. Kuwahara Y, Koshii T, Okamoto M, Matsumoto K, Suzuki T (1991b) Chemical ecology on astigmatid mites. XXX. Neral as the alarm pheromone of Glycyphagus domesticus (De Geer) (Acarina: Glycyphagidae). Jap J San Zool 42:29–32Google Scholar
  33. Kuwahara Y, Sato M, Koshii T, Suzuki T (1992) Chemical ecology on astigmatid mites. XXXII. 2-Hydroxy-6-methyl-benzaldehyde, the sex pheromone of the brown-legged grain mite Aleuroglyphus ovatus (Troupeau) (Acarina, Acaridae). Appl Ent Zool 27:253–260Google Scholar
  34. Kuwahara Y, Ohshima M, Sato M, Kurosa K, Matsuyama S, Suzuki T (1995) Chemical ecology of astigmatid mites. XL. Identification of the alarm pheromone and new C17 hydrocarbons from Tortonia sp., a pest attacking the nests of Osmia cornifrons. Appl Ent Zool 30:177–184Google Scholar
  35. Kuwahara Y, Ibi T, Nakatani Y, Ryono A, Mori N, Sakata, T., Okabe K, Tagami K, Kurosa K (2001) Neral, the alarm pheromone of Schwiebea elongata (Banks) (Acari: Acaridae). J Acarol Soc Jpn 10:19–26CrossRefGoogle Scholar
  36. Leal WS, Mochizuki F (1990) Chemoreception in astigmatid mites. Naturwissenschaften 77:593–594PubMedCrossRefGoogle Scholar
  37. Leal WS, Nakano Y, Kuwahara Y, Nakao H, Suzuki T (1988) Pheromone study on astigmatid mites. XVII. Identification of 2-hydroxy-6-methyl-benzaldehyde as the alarm pheromone of the acarid mite Tyroglyphus perniciosus (Acarina: Acaridae), and its distribution among related mites. Appl Ent Zool 23:422–427Google Scholar
  38. Löfqvist J (1976) Formic acid and saturated hydrocarbons as alarm pheromones from the ant Formica rufa. J Insect Physiol 22:1331–1346CrossRefGoogle Scholar
  39. Matsumoto K, Wada Y, Okamoto M (1979) The alarm pheromone of grain mites and its antifungal effect. In: Rodriguez JG (eds) Recent advances in acarology, Vol I. Academic Press, New York, pp 243–249Google Scholar
  40. Michael AD (1884) British Oribatidae, Vol. I. The Ray Society, LondonGoogle Scholar
  41. Mori N, Kuwahara Y, Kurosa K, Nishida R, Fukushima T (1995) Chemical ecology of astigmatid mites. XLI. Undecane: The sex pheromone of the acarid mite Caloglyphus rodriguezi Samsinak (Acarina: Acaridae). Appl Ent Zool 30:415–423Google Scholar
  42. Nault LR, Edwards LJ, Styer WE (1973) Aphid alarm pheromones: secretion and reception. Environ Entomol 2:101–105Google Scholar
  43. Norton RA (1994) Evolutionary aspects of oribatid mite life-histories and consequences for the origin of the Astigmata. In: Patterns M Houck (eds) Mites: ecological and evolutionary analyses of life-history. Chapman & Hall, New York, pp 99–135Google Scholar
  44. Norton RA (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp Appl Acarol 22:559–594CrossRefGoogle Scholar
  45. Norton RA, Alberti G (1997) Porose integumental organs of oribatid mites (Acari, Oribatida). 3.␣Evolutionary and ecological aspects. Zoologica 146: 115–143Google Scholar
  46. Okamoto M, Matsumoto K, Wada Y, Nakano H (1978) Studies on antifungal effect of mite alarm pheromone citral. I. Evaluation of antifungal effect of citral. Jap J Sanit Zool 29:255–260Google Scholar
  47. Raspotnig G, Schuster R, Krisper G, Fauler G, Leis HJ (2001) Chemistry of the oil gland secretion of Collohmannia gigantea Sellnick, 1922 (Acari: Oribatida). Exp Appl Acarol 25:933–946PubMedCrossRefGoogle Scholar
  48. Raspotnig G, Schuster R, Krisper G (2003) Functional anatomy of oil glands in Collohmannia gigantea (Acari, Oribatida). Zoomorpholgy 122:105–112CrossRefGoogle Scholar
  49. Raspotnig G, Schuster R, Krisper G (2004a) Citral in oil gland secretions of Oribatida (Acari): a key component for phylogenetic analyses. Abh Ber Naturkundemus Görlitz 76:43–50Google Scholar
  50. Raspotnig G, Krisper G, Schuster R (2004b) Oil gland chemistry of Trhypochthonius tectorum (Acari: Oribatida) with reference to the phylogenetic significance of secretion profiles in the Trhypochthoniidae. Int J Acarol 30:369–374Google Scholar
  51. Raspotnig G, Krisper G, Schuster R (2005a) Ontogenetic changes in the chemistry and morphology of oil glands in Hermannia convexa (Acari: Oribatida). Exp Appl Acarol 35:47–58CrossRefGoogle Scholar
  52. Raspotnig G, Krisper G, Schuster R, Fauler G, Leis HJ (2005b) Volatile exudates from the oribatid mite, Platynothrus peltifer. J Chem Ecol 31:419–430CrossRefGoogle Scholar
  53. Remold H (1962) Über die biologische Bedeutung der DuftdrÜsen bei Landwanzen (Geocorisae). Z Vergl Physiol 45:636–694CrossRefGoogle Scholar
  54. Remold H (1963) Scent-glands of land bugs, their physiology and biological function. Nature 198:764–768CrossRefGoogle Scholar
  55. Riha G (1951) Zur Ökologie der Oribatiden in KalksteinbÖden. Zool. Jb Syst Abt 80:407–450Google Scholar
  56. Ryono A, Mori N, Okabe K, Kuwahara Y (2001) 2-Hydroxy-6-methyl-benzaldehyde: female sex pheromone of Cosmoglyphus hughesi Samsinak (Acari: Acaridae). Appl Ent Zool 36:77–81CrossRefGoogle Scholar
  57. Saito M, Kawasumi T, Kusumoto KI (1991) Antifungal effect of herbs, spices, vegetables, fruit and volatile compounds. Rep Int Food Res Inst (0) 55:15–18Google Scholar
  58. Sakata T, Norton RA (2001) Opisthonotal gland chemistry of early-derivative oribatid mites (Acari) and ist relevance to systematic relationships of Astigmata. Internat J Acarol 27:281–292Google Scholar
  59. Sakata T, Norton RA (2003) Opisthonotal gland chemistry of a middle-derivative oribatid mite, Archegozetes longisetosus (Acari: Trhypochthoniidae). Int J Acarol 29:345–350CrossRefGoogle Scholar
  60. Sakata T, Tagami K, Kuwahara Y (1995) Chemical ecology of oribatid mites I Oil gland components of Hydronothrus crispus. Aoki J Acarol Soc Jpn 4:69–75Google Scholar
  61. Sato M, Kuwahara Y, Matsuyama S, Suzuki T, Okamoto M, Matsumoto K (1993) Male and female sex pheromones produced by Acarus immobilis Griffiths (Acaridae, Acarina). Chemical ecology on astigmatid mites. XXXIV. Naturwissenschaften 80:34–36CrossRefGoogle Scholar
  62. Schatz H (2002) The Oribatida literature and the described oribatid species (Acari) (1758–2001) – an analysis. Abh Ber Naturkundemus Görlitz 74:37–45Google Scholar
  63. Schmid R (1988) Morphologische Anpassungen in einem Räuber-Beute-System: Ameisenkäfer (Scydmaenidae, Staphylinoidea) und gepanzerte Milben (Acari). Zool Jb Abt Syst Ökol. Tiere 115:207–228Google Scholar
  64. Schuster R (1966a) Über den Beutefang des Ameisenkäfers Cephennium austriacum Reiter. Naturwissenschaften 53:113CrossRefGoogle Scholar
  65. Schuster R (1966b) Scydmaeniden-Larven als Milbenräuber. Naturwissenschaften 53:439–440CrossRefGoogle Scholar
  66. Shimano S, Sakata T, Mizutani Y, Kuwahara Y, Aoki J (2002) Geranial: the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J Chem Ecol 28:1831–1837PubMedCrossRefGoogle Scholar
  67. Smrz J (1992) Some adaptive features in the microanatomy of moss-dwelling oribatid mites (Acari: Oribatida) with respect to their ontogenetical development. Pedobiologia 36:306–320Google Scholar
  68. Sturm, J. (1838) Deutschlands Insekten Käfer. In: Sturm J (ed) Deutschlands Fauna in Abbildungen nach der Natur mit Beschreibungen, V. Abtheilung, vol 13. J. Sturm, Nürnberg, pp. 1–128 (register and figures 259–271)Google Scholar
  69. Syed M, Khalid MR, Chaudhary FM (1990) Essential oils of Gramineae family having antibacterial activity: part I. Cymbopogon citratus, C. martinii and C. jawarancusa oils. Pak J Sci Ind Res 33:529–531Google Scholar
  70. van der Hammen L (1980) Glossary of acarological terminology, Vol I. General terminology. Junk BV publishers, The HagueGoogle Scholar
  71. Wilson EO, Regnier FE Jr (1971) The evolution of the alarm-defense system in the formicine ants. Am Nat 105:279–289CrossRefGoogle Scholar
  72. Woodring JP (1970) Comparative morphology, homologies and functions of the male system in oribatid mites (Arachnida: Acari). J Morph 132:425–452PubMedCrossRefGoogle Scholar
  73. Zachvatkin AA (1941) Fauna of USSR. Arachnoidea Vol VI, No 1. Tyroglyphoidea (Acari). Zoological Institute of the Academy of Science of the USSR, MoscowGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2006

Authors and Affiliations

  1. 1.Institute of ZoologyKarl-Franzens-UniversityGrazAustria
  2. 2.Department of Biochemical Analysis & Mass SpectrometryUniversity Childrens Hospital, Medical UniversityGrazAustria

Personalised recommendations