Experimental & Applied Acarology

, Volume 38, Issue 2–3, pp 87–111

The Effects of Prey Patchiness, Predator Aggregation, and Mutual Interference on the Functional Response of Phytoseiulus persimilis Feeding on Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae)



The spatial distributions of two-spotted spider mites Tetranychus urticae and their natural enemy, the phytoseiid predator Phytoseiulus persimilis, were studied on six full-grown cucumber plants. Both mite species were very patchily distributed and P. persimilis tended to aggregate on leaves with abundant prey. The effects of non-homogenous distributions and degree of spatial overlap between prey and predators on the per capita predation rate were studied by means of a stage-specific predation model that averages the predation rates over all the local populations inhabiting the individual leaves. The empirical predation rates were compared with predictions assuming random predator search and/or an even distribution of prey. The analysis clearly shows that the ability of the predators to search non-randomly increases their predation rate. On the other hand, the prey may gain if it adopts a more even distribution when its density is low and a more patchy distribution when density increases. Mutual interference between searching predators reduces the predation rate, but the effect is negligible. The stage-specific functional response model was compared with two simpler models without explicit stage structure. Both unstructured models yielded predictions that were quite similar to those of the stage-structured model.


Non-random search Predation rate Predatory mites Spider mites Within-plant distributions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beddington, J.R. 1975Mutual interference between parasites or predators, and its effect on searching efficiencyJ. Anim. Ecol.44331340Google Scholar
  2. Bergström, U., Englund, G. 2002Estimating predation rates in experimental systems: scale-dependent effects of aggregative behaviourOikos97251259Google Scholar
  3. Berec, L. 2000Mixed encounters, limited perception and optimal foragingBull. Math. Biol.62849868CrossRefPubMedGoogle Scholar
  4. Bernstein C. 1981. Dispersal of Phytoseiulus persimilis (Acarina: Phytoseiidae) in response to prey density and distribution. Unpublished Ph.D. thesis.Google Scholar
  5. Bernstein, C. 1985A simulation model for an acarine predator–prey system (Phytoseiulus persimilis-Tetranychus urticae)J. Anim. Ecol.54375389Google Scholar
  6. Bernstein, C., Kacelnik, A., Krebs, J.R. 1988Individual decisions and the distributions of predators in a patchy environmentJ. Anim. Ecol.5710071026Google Scholar
  7. Bernstein, C., Kacelnik, A., Krebs, J.R. 1991Individual decisions and the distributions of predators in a patchy environment. IIJ. Anim. Ecol.60205225Google Scholar
  8. Bliss, C.I., Fisher, R.A. 1953Fitting the negative binomial distribution to biological dataBiometrics9176200Google Scholar
  9. Buffoni, G., Gilioli, G. 2003A lumped parameter model for acarine predator–prey population interactionsEcol. Model.170155171CrossRefGoogle Scholar
  10. Charnov, E.L. 1976Optimal foraging, the marginal theoremTheor. Popul. Biol.9129136PubMedGoogle Scholar
  11. Chesson, P.L., Murdoch, W.W. 1986Aggregation of risk: relationships among host-parasitoid modelsAm. Nat.127696715CrossRefGoogle Scholar
  12. Colquhoun, D. 1971Lectures on BiostatisticsClarendon PressOxfordGoogle Scholar
  13. Dicke, M., Sabelis, M.W., Jong, M. 1988Analysis of prey preferences in phytoseiid mites by using an olfactometerpredation models and electrophoresisExp. Appl. Acarol.5225241Google Scholar
  14. Dicke, M., Sabelis, M.W. 1992

    Costs and benefits of chemical information conveyance: proximate and ultimate factors

    Roitberg, B.D.Isman, M.B. eds. Insect Chemical EcologyChapman & HallNew York122155
    Google Scholar
  15. Dicke, M., Takabayashi, J., Posthumus, M.A., Schütte, C., Krips, O.E. 1998Plant–phytoseiid interactions mediated by herbivore-induced plant volatiles: variation in production of cues and in responses of predatory mitesExp. Appl. Acarol.22311333CrossRefGoogle Scholar
  16. Drukker, B., Bruin, J., Jacobs, G., Kroon, A., Sabelis, M.W. 2000How predatory mites learn to cope with variability in volatile plant signals in the environment of their herbivorous preyExp. Appl. Acarol.24881895CrossRefPubMedGoogle Scholar
  17. Eveleigh, E.S., Chant, D.A. 1981Experimental studies on acarine predator–prey interactions: the numerical response of immature and adult predators (Acarina: Phytoseiidae)Can. J. Zool.5914071418Google Scholar
  18. Eveleigh, E.S., Chant, D.A. 1982Experimental studies on acarine predator–prey interactions: the effects of predator density on prey consumption, predator searching efficiency, and the functional response to prey density (Acarina: Phytoseiidae)Can. J. Zool.60611629Google Scholar
  19. Fernando, M.H.J.P., Hassell, M.P. 1980Predator–prey responses in an acarine systemRes. Popul. Ecol.22301322Google Scholar
  20. Gascoigne, J.C., Lipcius, R.N. 2004Allee effects driven by predationJ. App. Ecol.41801810Google Scholar
  21. Greco, N.M., Liljesthröm, G.G., Sánchez, N.E. 1999Spatial distribution and coincidence of Neoseiulus californicus and Tetranychus urticae (Acari: Phytoseiidae,Tetranychidae) on strawberryExp. Appl. Acarol.23567580CrossRefGoogle Scholar
  22. Hassell, M.P., May, R.M. 1973Stability in insect host–parasite modelsJ. Anim. Ecol.42693736Google Scholar
  23. Hassell, M.P., May, R.M, Pacala, S.W., Chesson, P.L. 1991The persistence of host–parasitoid associations in patchy environments. I. A general criterionAm. Nat.138568583CrossRefGoogle Scholar
  24. Hassell, M.P., Wilson, H.B. 1997

    The dynamics of spatially distributed host–parasitoid systems

    Tilman, D.Kareiva, P. eds. Spatial EcologyPrinceton University PressPrinceton75110
    Google Scholar
  25. Helle, W., Sabelis, M.W. 1985Spider Mites. Their Biology, Natural Enemies and ControlElsevierAmsterdamGoogle Scholar
  26. Hilborn, R., Mangel, M. 1997The Ecological DetectivePrinceton University PressPrincetonGoogle Scholar
  27. Holling, C.S. 1959Some characteristics of simple types of predation and parasitismCan. Entomol.91385398Google Scholar
  28. Hubbard, S.F., Cook, R.M. 1978Optimal foraging by parasitoid waspsJ. Anim. Ecol.47593604Google Scholar
  29. Hussey, N.W., Parr, W.J. 1963The effect of glasshouse red spider mite (Tetranychus urticae Koch) on the yield of cucumbersJ. Hort. Sci.38255263Google Scholar
  30. Ives, A.R. 1992Density-dependent and density-independent parasitoid aggregation in model host–parasitoid systemsAm. Nat.140912937Google Scholar
  31. Ives, A.R., Schooler, S.S, Jagar, V.J., Knuteson, S.E., Grbic, M., Settle, W.H. 1999Variability and parasitoid foraging efficiency: a case study of pea aphids and Aphidius erviAm. Nat.154652673CrossRefPubMedGoogle Scholar
  32. Ivlev, V.S. 1961Experimental Ecology of the Feeding of FishesYale University PressNew HavenGoogle Scholar
  33. Janssen, A., Bruin, J., Jacobs, G., Schraag, R., Sabelis, M.W. 1997Predators use volatiles to avoid prey patches with conspecificsJ. Anim. Ecol.66223232Google Scholar
  34. Iwasa, Y., Higashi, M., Yamamura, N. 1981Prey distribution as a factor determining the choice of optimal foraging strategyAm. Nat.117710723CrossRefGoogle Scholar
  35. Kaiser, H. 1983Small scale spatial heterogeneity influences predation success in an unexpected way: model experiments on the functional response of predatory mites (Acarina)Oecologia (Berlin)56249256CrossRefGoogle Scholar
  36. Krivan, V. 1997Dynamic ideal free distribution: effects of optimal patch choice on predator prey dynamicsAm. Nat.149164178CrossRefGoogle Scholar
  37. Krebs, J.R., Ryan, J.C., Charnov, E.L. 1974Hunting by expectation or optimal foraging? A study of patch use by chickadeesAnim. Behav.22953964CrossRefGoogle Scholar
  38. Margolies, D.C., Sabelis, M.W., Boyer, J.E.,Jr. 1997Response of a phytoseiid predator to herbivore-induced plant volatiles: selection on attraction and effect on prey exploitationJ. Insect Behav.10695709Google Scholar
  39. McCauley, E., Kendall, B.E., Janssen, A., Wood, S., Murdoch, W.E., Hosseini, P., Briggs, C.J., Ellner, S.P., Nisbet, R.M., Sabelis, M.W., Turchin, P. 2000Inferring colonization processes from population dynamics in spatially structured predator–prey systemsEcology8133503361Google Scholar
  40. Murdie, G., Hassell, M.P. 1973

    Food Distribution, searching success and predator–prey models

    Hiorns, R.W. eds. The Mathematical Theory of the Dynamics of Biological PopulationsAcademic PressLondon87101
    Google Scholar
  41. Murdoch, W.W. 1973The functional response of predatorsJ. Appl. Ecol.14335341Google Scholar
  42. Murdoch, W.W, Stewart-Oaten, A. 1989Aggregation by parasitoids: effects on equilibrium and stabilityAm. Nat.134288310CrossRefGoogle Scholar
  43. Nachman, G. 1981aTemporal and spatial dynamics of an acarine predator–prey systemJ. Anim. Ecol.50435451Google Scholar
  44. Nachman, G. 1981bA mathematical model of the functional relationship between density and spatial distribution of a populationJ. Anim. Ecol.50453460Google Scholar
  45. Nachman, G. 2001Predator–prey interactions in a nonequilibrium context: the metapopulation approach to modelling “hide-and-seek” dynamics in a spatially explicit tri-trophic systemOikos947288CrossRefGoogle Scholar
  46. Nachman G. A functional response model of a predator population foraging in a patchy habitat. J. Anim. Ecol. (in press).Google Scholar
  47. Nachman, G., Zemek, R. 2003Interactions in a tritrophic acarine predator–prey metapopulation system V: within-plant dynamics of Phytoseiulus persimilis and Tetranychus urticae (Acari: Phytoseiidae, Tetranychidae)Exp. Appl. Acarol.293568CrossRefPubMedGoogle Scholar
  48. Pels, B., Sabelis, M.W. 1999Local dynamics, overexploitation and predator dispersal in an acarine predator–prey systemOikos86573583Google Scholar
  49. Royama, T. 1992Analytical Population DynamicsChapman & HallLondonGoogle Scholar
  50. Ryoo, M.I. 1986Studies on the basic components of the predation of Phytoseiulus persimilis Athias-Henriot (Acarina: Phytoseiidae)Res. Popul. Ecol.281726Google Scholar
  51. Sabelis, M.W., Bakker, F.M. 1992How predatory mites cope with the web of their tetranychid prey: a functional view on dorsal chaetotaxy in the PhytoseiidaeExp. Appl. Acarol.16203225CrossRefGoogle Scholar
  52. Schreiber, S.J., Fox, L.R., Getz, W.M. 2000Coevolution of contrary choices in host-parasitoid systemsAm. Nat.155637648CrossRefPubMedGoogle Scholar
  53. Shimoda, T., Takabayashi, J. 2001Migration of specialist insect predators to exploit patchily distributed spider mitesPopul. Ecol.431521Google Scholar
  54. Siegel, S., Castellan, N.J. 1988Nonparametric Statistics for the Behavioral SciencesMcGraw-HillNew YorkGoogle Scholar
  55. Southwood, T.R.E. 1978Ecological Methods with Particular Reference to the Study of Insect Populations2Chapman and HallLondonGoogle Scholar
  56. Strong, W.B., Slone, D.H., Croft, B.A. 1999Hops as a metapopulation landscape for tetranychid–phytoseiid interactions: perspectives of intra- and interplant dispersalExp. Appl. Acarol.23581597CrossRefGoogle Scholar
  57. Sutherland, W.J. 1996From Individual Behaviour to Population EcologyOxford University PressOxfordGoogle Scholar
  58. Takafuji, A., Chant, D.A. 1976Comparative studies of two species of predacious phytoeseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their preyRes. Popul. Ecol.17255310Google Scholar
  59. Takafuji, A., Deguchi, K. 1980Functional responses of a predacious phytoseiid mite in different sizes of experimental universeJ. Appl. Entomol. Zool.15355357Google Scholar
  60. Taylor, L.R. 1961Aggregation, variance and the meanNature189732735Google Scholar
  61. Taylor, L.R. 1984Assessing and interpreting the spatial distributions of insect populationsAnn. Rev. Entomol.29321357CrossRefGoogle Scholar
  62. Alphen, J.J.M., Bernstein, C., Driessen, G. 2003Information acquisition and time allocation in insect parasitoidsTrends Ecol. Evol.188187Google Scholar
  63. Baalen, M., Sabelis, M.W. 1993Coevolution of patch selection strategies of predator and prey and the consequences for ecological stabilityAm. Nat.142646670Google Scholar
  64. Meer, J., Ens, B.J. 1997Models of interference and their consequences for the spatial distriubtion of ideal and freee predatorsJ. Anim. Ecol.66846858Google Scholar
  65. Weibull, W. 1951A statistical distribution function of wide applicabilityJ. Appl. Mech.18293297Google Scholar
  66. Yao, D.S., Chant, D.A. 1990Changes in body weight of two species of predatory mites (Acarina: Phytoseiidae) as a consequence of feeding in an interactive systemExp. Appl. Acarol.8195220CrossRefGoogle Scholar
  67. Zhang, Z.-Q., Sanderson, J.P. 1992Short-distance location of spider mite colonies by three predatory mites (Acari: Tetranychidae, Phytoseiidae): predator responses to prey- and predator-associated stimuliEnviron. Entomol.21799807Google Scholar
  68. Zhang, Z.-Q., Sanderson, J.P., Nyrop, J.P. 1992Foraging time and spatial patterns of predation in experimental populationsOecologia90185196Google Scholar
  69. Zhang, Z.-Q., Sanderson, J.P. 1993Behavioral responses to prey density by three acarine predator species with different degrees of polyphagyOecologia96147156Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Population Biology, Institute of BiologyUniversity of CopenhagenØ CopenhagenDenmark

Personalised recommendations