Advertisement

Experimental & Applied Acarology

, Volume 38, Issue 2–3, pp 113–124 | Cite as

Previous and Present Diets of Mite Predators Affect Antipredator Behaviour of Whitefly Prey

  • Rui-Xia Meng
  • Arne JanssenEmail author
  • Maria Nomikou
  • Qing-Wen Zhang
  • Maurice W. Sabelis
Article

Abstract

Predator diet is known to influence antipredator behaviour in prey. Yet, it is not clear how antipredator behaviour is affected by diet changes of the predator. We studied the effect of previous and present diet of a predatory mite Typhlodromips swirskii on the antipredator response of its prey, the whitefly Bemisia tabaci. An earlier study showed that adult female whiteflies that had experienced predators, had learned to avoid ovipositing on plants with predators whose previous and present diet consisted of whitefly eggs and immatures. Here, we investigate whether adult whiteflies also avoid plants with predators whose present and/or previous diet consisted of a non-whitefly food source. Adult whiteflies were found not to avoid plants with predators whose present diet consisted of pollen and whose previous diet had consisted of either pollen or whitefly eggs and larvae. They did avoid plants with predators whose present diet consisted of whiteflies and whose previous diet had consisted of pollen, but to a lesser extent than when previous and present diet consisted of whiteflies. In a choice experiment, whiteflies discriminated between plants with predators whose present diet consisted of whiteflies, but that differed in previous diet. Our results show that both previous and present diets of predators are important in eliciting antipredator behaviour.

Keywords

Bemisia tabaci Phytoseiids Predation risk Predator avoidance Typhlodromips swirskii 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, M.V., Dill, L.M. 1989A determination of the energetic equivalence of the risk of predationEcology709991007Google Scholar
  2. Chivers, D.P., Smith, R.J.F. 1998Chemical alarm signalling in aquatic predator–prey systems: a review and prospectusEcoscience5338352Google Scholar
  3. Chivers, D.P., Wisenden, B.D., Smith, R.J.F. 1996Damselfly larvae learn to recognize predators from chemical cues in the predator's dietAnim. Behav.52315320CrossRefGoogle Scholar
  4. Crowl, T.A., Covich, A.P. 1990Predator-induced life-history shifts in a fresh-water snailScience247949951Google Scholar
  5. Dill, L.M. 1987Animal decision making and its ecological consequences: the future of aquatic ecology and behaviourCan. J. Zool.65551561Google Scholar
  6. Gerling, D., Mayer, R.T. 1996Bemisia 1995: Taxonomy, Biology, DamageControl and ManagementInterceptAndover, UKGoogle Scholar
  7. Grand, T.C., Dill, L. 1997The energetic equivalence of cover to juvenile coho salmon (Oncorhynchus kisutch): ideal free distribution theory appliedBehav. Ecol.4551561Google Scholar
  8. Howe, N.R., Harris, G. 1978Transfer of the sea anemone pheromoneanthopleurineby the nudibranch Aeolidia papillosaJ. Chem. Ecol.4551561CrossRefGoogle Scholar
  9. Hurlbert, S.H. 1984Pseudoreplication and the design of ecological field experimentsEcol. Monogr.54187211Google Scholar
  10. Janssen, A. 1999Plants with spider-mite prey attract more predatory mites than clean plants under greenhouse conditionsEnt. Exp. Appl.90191198Google Scholar
  11. Kats, L.B., Dill, L.M. 1998The scent of death: chemosensory assessment of predation risk by prey animalsEcoscience5361394Google Scholar
  12. Keefe, M. 1992Chemically mediated avoidance behavior in wild brook troutSalvelinus fontinalis: the response to familiar and unfamiliar predaceous fishes and the influence of fish dietCan. J. Zool.70288292Google Scholar
  13. Laurila, A., Kujasalo, J., Ranta, E. 1997Different antipredator behaviour in two anuran tadpoles: effects of predator dietBehav. Ecol. Sociobiol.40329336CrossRefGoogle Scholar
  14. Lima, S.L. 1998Nonlethal effects in the ecology of predator–prey interactions – what are the ecological effects of anti-predator decision-making?Bioscience482534Google Scholar
  15. Lima, S.L., Bednekoff, P.A. 1999Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesisAm. Nat.153649659Google Scholar
  16. Lima, S.L., Dill, L.M. 1990Behavioral decisions made under the risk of predation – a review and prospectusCan. J. Zool.68619640Google Scholar
  17. Maron, J.L., Harrison, S. 1997Spatial pattern formation in an insect host–parasitoid systemScience27816191621CrossRefPubMedGoogle Scholar
  18. Maron, J.L., Harrison, S., Greaves, M. 2001Origin of an insect outbreak: escape in space or time from natural enemies?Oecologia126595602CrossRefGoogle Scholar
  19. Mathis, A., Hoback, W.W. 1997The influence of chemical stimuli from predators on precopulatory pairing by the amphipodGammas pseudolimnaeusEthology1033340Google Scholar
  20. Mathis, A., Smith, R.J.F. 1993aChemical labeling of Northern pike (Esox lucius) by the alarm pheromone of fathead minnows (Pimephales romelas)J. Chem. Ecol.1919671979CrossRefGoogle Scholar
  21. Mathis, A., Smith, R.J.F. 1993bFathead minnows (Pimephales promelas) learn to recognize pike (Esox lucius) as predators on basis of chemical stimuli from minnows in the pike's dietAnim. Behav.46645656CrossRefGoogle Scholar
  22. Mayhew, P.J. 1997Adaptive patterns of host-plant selection by phytophagous insectsOikos79417428Google Scholar
  23. Murray, D.L., Jenkins, C.L. 1999Perceived predation risk as a function of predator dietary cues in terrestrial salamandersAnim. Behav.573339CrossRefPubMedGoogle Scholar
  24. Nomikou, M., Janssen, A., Sabelis, M.W. 2003aHerbivore host plant selection: whitefly learns to avoid host plants that harbour predators of her offspringOecologia136484488CrossRefGoogle Scholar
  25. Nomikou, M., Janssen, A., Sabelis, M.W. 2003bPhytoseiid predators of whiteflies feed and reproduce on non-prey food sourcesExp. Appl. Acarol.311526Google Scholar
  26. Nomikou, M., Janssen, A., Schraag, R., Sabelis, M.W. 2001Phytoseiid predators as potential biological control agents for Bemisia tabaciExp. Appl. Acarol.25271291CrossRefPubMedGoogle Scholar
  27. Nomikou, M., Janssen, A., Schraag, R., Sabelis, M.W. 2002Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative foodExp. Appl. Acarol.275768CrossRefPubMedGoogle Scholar
  28. Nomikou, M., Janssen, A., Schraag, R., Sabelis, M.W. 2004Vulnerability of Bemisia tabaci immatures to phytoseiid predators: consequences for oviposition and influence of alternative foodEnt. Exp. Appl.11095102Google Scholar
  29. Ohsaki, N., Sato, Y. 1994Food plant choice of Pieris butterflies as a trade-off between parasitoid avoidance and quality of plantsEcology755968Google Scholar
  30. Overmeer, W.P.J. 1985Rearing and handlingHelle, W.Sabelis, M.W. eds. Spider Mites, Their Biology, Natural Enemies and Control, Vol. 1bElsevierAmsterdam, The Netherlands162170Google Scholar
  31. Pallini, A., Janssen, A., Sabelis, M.W. 1998Predators induce interspecific herbivore competition for food in refuge spaceEcol. Lett.1171177CrossRefGoogle Scholar
  32. Pallini, A., Janssen, A., Sabelis, M.W. 1999Spider mites avoid plants with predatorsExp. Appl. Acarol.23803815CrossRefGoogle Scholar
  33. Peckarsky, B.L., McIntosh, A.R. 1998Fitness and community consequences of avoiding multiple predatorsOecologia113565576CrossRefGoogle Scholar
  34. Persons, M.H., Walker, S.E., Rypstra, A.L., Marshall, S.D. 2001Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae)Anim. Behav.614351CrossRefPubMedGoogle Scholar
  35. Petranka, J.W., Fakhoury, K. 1991Evidence of a chemically-mediated avoidance-response of ovipositing insects to blue-gills and green frog tadpolesCopeia70234239Google Scholar
  36. Sih, A. 1980Optimal behavior: can foragers balance two conflicting needs?Science21010411043Google Scholar
  37. Sih, A. 1986Antipredator behaviour and the perception of danger by moquito larvaeEcology76434441Google Scholar
  38. Sih, A. 1997To hide or not to hide? Refuge use in a fluctuating environment.Trends Ecol. Evol.12375376CrossRefGoogle Scholar
  39. Sokal, R.R., Rohlf, F.J. 1995Biometry3FreemanNew York, USAGoogle Scholar
  40. Stephens, D.W., Krebs, J.R. 1986Foraging TheoryPrinceton University PressPrinceton, New Jersey, USAGoogle Scholar
  41. Teerling, C.R., Pierce, H.D., Borden, J.H., Gillespie, D.R. 1993Identification and bioactivity of alarm pheromone in the Western Flower Thrips, Frankliniella occidentalisJ. Chem. Ecol.19681697CrossRefGoogle Scholar
  42. Thompson, J.N. 1988Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insectsEnt. Exp. Appl.47314Google Scholar
  43. Tollrian, R., Harvell, C.D. 1999The evolution of inducible defenses: current ideasTollrian, R.Harvell, C.D. eds. The Ecology of Inducible DefensesPrinceton University PressPrinceton, New Jersey, USA306321Google Scholar
  44. Venzon, M., Janssen, A., Pallini, A., Sabelis, M.W. 2000Diet of a polyphagous arthropod predator affects refuge seeking of its thrips preyAnim. Behav.60369375CrossRefPubMedGoogle Scholar
  45. Wilson, D.J., Lefcort, H. 1993The effects of predator diet on the alarm response of red-legged frog, Rana auroratadpolesAnim. Behav.4610171019CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Rui-Xia Meng
    • 1
    • 2
    • 3
  • Arne Janssen
    • 3
    Email author
  • Maria Nomikou
    • 3
  • Qing-Wen Zhang
    • 1
    • 2
  • Maurice W. Sabelis
    • 3
  1. 1.Department of EntomologyChina Agricultural UniversityBeijingP.R. China
  2. 2.Laboratory of Entomology, Inner Mongolia Agricultural UniversityHuhhotP.R. China
  3. 3.IBED, Population BiologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations