Experimental & Applied Acarology

, Volume 38, Issue 2–3, pp 219–235 | Cite as

The Known Distribution and Ecological Preferences of the Tick Subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America

  • A. Estrada-Peña
  • A. Bouattour
  • J. -L. Camicas
  • A. Guglielmone
  • I. Horak
  • F. Jongejan
  • A. Latif
  • R. Pegram
  • A. R. Walker


A compilation of the known distribution of Boophilus ticks in Africa and Latin America is presented, together with details on climate preferences. B. annulatus is recorded mainly in the western part of a strip from the equator to parallel 20° N. It associates with woodlands and forests (lowland rain forest and secondary grassland). This species is also present in the Mediterranean region, associated to woodland and open areas. B. decoloratus extends southern to parallel 20° N, in woodland with montane vegetation and Zambezian miombo; some records have been collected in the highveld grassland. B. geigyi is mainly collected in the western range of a stripe extending between parallels 5° N and 18° N, associated with Sudanian woodland, lowland rain forest with secondary grassland and woodland. Confirmed records of microplus in Africa are restricted to Malagasy region and south and eastern Africa, being predominant in the Zambezian miombo, deciduous forest with secondary grassland, and woodland. In Latin America, microplus is abundant in the Mesoamerican corridor to Venezuela and Colombia, and southern in Brazil and Argentina. The tick is mainly associated to the biomes of Chaco and Pampas in Argentina, the North-central moist Andes, the Atlantic forest (southern range) and the moist Meso-American vegetation (northern range). Most collections of B. annulatus and B. geigyi came from areas where winter minimum temperature is above 15 °C, maximum temperatures remain between 33 and 36 °C and maximum rainfall is recorded between June and September. B. decoloratus and African B. microplus are recorded in sites with low temperatures in May–September. Minimum temperature requirements are similar for both B. decoloratus and African B. microplus, and both are around 4 °C less than the value recorded for collections of Latin-American B. microplus. The rainfall pattern observed for decoloratus shows a minimum in May and June. The requirements of total rainfall are highest for B. microplus in Latin America, while records of African B. microplus are concentrated in areas of low rainfall between May and October, and high rainfall between November and March (low rainfall in the same period for B. decoloratus). Statistical analysis revealed the existence of populations (demes) with ecologically different requirements within each tick species. Both B. annulatus and B. decoloratus showed many different demes clearly associated to defined areas. The collections of Latin American B. microplus are very homogeneous according climate preferences and well separated from the African counterpart.


Boophilus Distribution Ecological preferences Populations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arthur, D.R., Londt, J.G.H. 1973The parasitic cycle of Boophilus decoloratus (Koch 1844) (Acarina: Ixodidae)J. Ent. Soc. Southern Africa3687116Google Scholar
  2. Beati, I., Keirans, J.E. 2001Analysis of the systematic relationships among ticks of the genera Rhipicephalus and Boophilus (AcarI: Ixodidae) based on mitochondrial 12S ribosomal DNA gene sequences and morphological charactersJ. Parasitol.873248PubMedGoogle Scholar
  3. Berkvens, D.L., Geysen, D.M., Chaka, G., Madder, M., Brandt, J.R.A. 1998A survey of the ixodid ticks parasitizing cattle in the Eastern province of ZambiaMed. Vet. Entomol.12234240CrossRefPubMedGoogle Scholar
  4. Cumming, G.S. 1999The Evolutionary Ecology in African Ticks (Acari: Ixodidae)University of OxfordOxford, UKPhD ThesisGoogle Scholar
  5. Cumming, G.S. 2002Comparing climate and vegetation as limiting factors for species ranges of African ticksEcology83255268Google Scholar
  6. Davies, A.J., Jenkinson, L.S., Lawton, J.L., Shorrocks, B., Wood, S. 1998Making mistakes when predicting shifts in species range in response to global warmingNature391783786CrossRefGoogle Scholar
  7. Davis, M.B., Shaw, R.G. 2001Range shifts and adaptive responses to Quaternary climate changeScience292673679CrossRefPubMedGoogle Scholar
  8. Vos, A.J. 1979Epidemiology and control of bovine babesiosis in South AfricaJ. South African Vet. Assoc.50357362Google Scholar
  9. Estrada-Peña, A. 2003Climate change decreases habitat suitability for some tick species (Acari: Ixodidae) in South AfricaOnderstepoort J. Vet. Res.707993PubMedGoogle Scholar
  10. George J.E. 1987. Cattle fever tick eradication programme in the USA: history, achievements, problems and implications for other countries. In “The eradication of ticks”, Proceedings of the expert consultation on the eradication of ticks with special reference to Latin America, pp. 1–7Google Scholar
  11. Gothe, R. 1967Ticks in the South African Zoological Survey Collection. Part XII. The genera Boophilus Curtice1891 and Margaropus Karsch 1879Onderstepoort J. Vet. Res.3881108Google Scholar
  12. Holt, R.D. 1996Adaptive evolution in source-sink environments: direct and indirect effects of density-dependence on niche evolutionOikos75182192Google Scholar
  13. Holt, R.D., Gomulkiewicz, R.,  et al. 1996

    The evolution of species niches: population dynamics perspectives

    Othmer, H.G. eds. Case Studies in Mathematical Modelling: Ecology, Physiology, and Cell BiologyPrentice HallSaddle RiverNew Jersey, USA17
    Google Scholar
  14. Horak, I.G., Camicas, J.-L., Keirans, J.E. 2002The ArgasidaeIxodidae and Nuttalliellidae (Acari: Ixodida): a list of valid tick namesExp. Appl. Acarol.282754CrossRefPubMedGoogle Scholar
  15. Hutchinson G.E. 1957. Concluding remarks. In “Population studies: animal ecology and demography”. Cold Spring Harbor Symposia on Quantitative Biology, vol. 22. Cold Spring Harbor Laboratory Press.Google Scholar
  16. International Consortium of Ticks and Tick-Borne Diseases (ICTTD) 2004. Ticks of Veterinary and Medical Importance. A series of three CD's on ticks on livestock in Afrucathe Mediterranean Region and Latin America (http://www.icttd.nl ).
  17. Lawton, J.L. 2000

    Concluding remarks: a review of some open questions

    Hutchings, M.J.John, E.Stewart, A.J.A. eds. Ecological Consequences of HeterogeneityCambridge University PressCambridge401424
    Google Scholar
  18. McLeod, J., Mwanaumo, B. 1978Ecological studies of ixodid ticks (Acari: Ixodidae) on cattle in Zambia. IV: Some anomalous infestation patterns in the northern and eastern regionsBull. Entomol. Res.68409429Google Scholar
  19. Morel, P.-C. 1965Les tiques de l’Afrique et du Bassin Méditerranéen (Ixodoidea)IEMVPTMaisons-AlfortFrance1105Unpublished manuscript.Google Scholar
  20. Murrell, A.N., Campbell, J.H., Barrer, S.C. 2000Phylogenetic análisis of the rhipicephaline ticks indicates that the genus Rhipicephalus is paraphyleticMol. Phylogenet. Evol.1617PubMedGoogle Scholar
  21. New, M., Hulme, M., Jones, P.D. 1999Representing twentieth century space-time climate variability. Part I. development of a 1950–1999 mean monthly terrestrial climatologyJ. Climate1282956CrossRefGoogle Scholar
  22. Norval, R.A.I., Perry, B.D., Hargreaves, S.K. 1992Tick and tick-borne disease control in Zimbabwe: what might the future hold?Zimbabwe Vet. Journal23115Google Scholar
  23. Olwoch, J.M., Rautenbach, C.J. de W., Erasmus, B.F.N., Engelbrecht, B.F.A., Jaarsveld, A.S. 2003Simulating tick distributions over sub-Saharan Africa: the use of observed and simulated climate surfacesJ. Biogeography3012211232CrossRefGoogle Scholar
  24. Osborne, P., Suárez-Seoane, S. 2002Should data be partitioned before building large distribution models?Ecol. Modelling157249259CrossRefGoogle Scholar
  25. Pearson, R.G., Dawson, T.P. 2003Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?Global Ecol. Biogeography12361371CrossRefGoogle Scholar
  26. Rasmussen, M.S. 1998Developing simpleoperational, consistent NDVI-vegetation models by applying environmental and climatic information. Part I: Assessment of net primary productionInt. J. Remote Sensing1997117Google Scholar
  27. Robinson, T.P. 1998Geographic information systems and the selection of priority areas for control of tsetse-transmitted trypanosomiasis in AfricaParasitology Today14457461CrossRefGoogle Scholar
  28. Sutherst, R.W. 1987The dynamics of hybrid zones between tick (Acari) speciesInt. J. Parasitol.17921926PubMedGoogle Scholar
  29. Sutherst, R.W., Maywald, G.F. 1985A computerised system for matching climates in ecologyAgric. Ecosyst. Environ.13281299Google Scholar
  30. Theiler, G. 1949Zoological survey of the Union of South Africa: Tick survey. Part II: Distribution of Boophilus(Palpoboophilus) decoloratusthe blue tickOnderstepoort J. Vet. Sci. Animal Industry22255268Google Scholar
  31. Theiler G. 1962. The Ixodidae parasites of vertebrates in Africa south of the Sahara. Project S 9958. Report to the Director of Veterinary Services, OnderstepoortSouth Africa.Google Scholar
  32. Tonnesen, M.H., Penzhorn, B.L., Bryson, N.R., Stoltsz, W.H., Masiwigiri, T. 2004Displacement of Boophilus decoloratus by Boophilus microplus in the Soutpansberg region, Limpopo provinceSouth AfricaExp. Appl. Acarol.32199208PubMedGoogle Scholar
  33. Walker, J.B., Mehlitz, D., Jones, G.E. 1978Genus Boophilus: The Blue Ticks. Notes on the Ticks of BotswanaGTZEschborn3035Google Scholar
  34. Walker A.R., Bouattour A., Camicas J.-L., Estrada-Peña A., Horak I., Latif A., Pegram R. and Preston P. 2003. Ticks of Domestic Animals in Africa. A Guide to Identification of Species. University of Edinburgh, 221 pp.Google Scholar
  35. Yeoman, G.H., Walker, J.B. 1967The ixodid ticks of TanzaniaCommonwealth Institute of EntomologyLondonGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Estrada-Peña
    • 1
  • A. Bouattour
    • 2
  • J. -L. Camicas
    • 3
  • A. Guglielmone
    • 4
  • I. Horak
    • 5
  • F. Jongejan
    • 5
    • 6
  • A. Latif
    • 7
  • R. Pegram
    • 8
  • A. R. Walker
    • 9
  1. 1.Department of ParasitologyFaculty of Veterinary MedicineZaragozaSpain
  2. 2.Institut PasteurTunisTunisia
  3. 3.Laboratoire d’Acarologie Médicale, Centre IRDMontpellierFrance
  4. 4.INTARafaelaArgentina
  5. 5.Department of Veterinary Tropical Diseases, Faculty of Veterinary ScienceUniversity of PretoriaOnderstepoort South Africa
  6. 6.Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
  7. 7.Onderstepoort Veterinary Institute, ARCOnderstepoortSouth Africa
  8. 8.FAO Caribbean Amblyomma ProgramSt. JohnsAntiqua
  9. 9.Centre for Tropical Veterinary MedicineUniversity of EdinburghScotlandUK

Personalised recommendations