Advertisement

Experimental & Applied Acarology

, Volume 38, Issue 1, pp 1–13 | Cite as

Is the Cereal Rust Mite, Abacarus Hystrix Really a Generalist? – Testing Colonization Performance on Novel Hosts

  • Anna SkorackaEmail author
  • Lechosław Kuczyński
Article

Abstract

The majority of eriophyoid mites are highly host specific and restricted to a narrow range of acceptable host plant species. The cereal rust mite, Abacarus hystrix was considered to be one of a few exceptions among them and has been found to be using a relatively wide host range. Since this species is a vagrant, inhabiting short-lived plants and aerially dispersing, it has commonly been considered to be a host generalist. Here the opposite hypothesis is tested, that host populations of A. hystrix are specialized on their local host plants and may represent host races. For this purpose, females from two host populations (quack grass, Agropyron repens and ryegrass, Lolium perenne) were transferred, and subsequently reared, on their normal (grass species from which females came from) and novel (other grass species) hosts. The female's fitness was assessed by survival and fecundity on the normal and novel host. Females of both populations had no success in the colonization of the novel host. They survived significantly better and had significantly higher fecundity on their normal host than on the novel one. These findings correspond with observations on host-dependent phenotype variability and host acceptance. The presence of locally specialized host populations in A. hystrix may be evidence for high host specificity among eriophyoids and the viruses they transmit. The main conclusion is that A. hystrix, which so far has been considered as a host generalist, in fact may be a complex species consisting of highly specialized host races.

Keywords

Eriophyidae Host races Host specificity Quack grass Reproduction Ryegrass Specialization Survival 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A.A. 2000Host range evolution: adaptation of mites and trade-offs in fitness on alternate hostsEcology81500508Google Scholar
  2. Agrawal, A.A., Vala, F., Sabelis, M.W. 2002Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adaptive plasticity?Am. Nat.159553565CrossRefGoogle Scholar
  3. Bergh, J.C., Weiss, C.R. 1993Pear rust miteEpitrimerus pyri (Acari: Eriophyidae) oviposition and nymphal development on Pyrus and non-Pyrus hostsExp. Appl. Acarol.17215224CrossRefGoogle Scholar
  4. Bernays, E.A. 1989Host range in phytophagous insects: the potential role of generalist predatorsEvol. Ecol.3299311CrossRefGoogle Scholar
  5. Bernays, E., Graham, M. 1988On the evolution of host specificity in phytophagous arthropodsEcology69886892Google Scholar
  6. Blair, C.P., Abrahamson, W.G., Jackman, J.A., Tyrrell, L. 2005Cryptic speciation and host-race formation in a purportedly generalist tumbling flower beetleEvolution59304316PubMedGoogle Scholar
  7. Bush, G.L. 1975Modes of animal speciationAnnu. Rev. Ecol. Syst.6339364CrossRefGoogle Scholar
  8. Byrne, D.H., Guerrero, J.M., Bellotti, A.C., Gracen, V.E. 1982Behavior and development of Mononychellus tanajoa (Acari: Tetranychidae) on resistant and susceptible cultivars of cassavaJ. Econ. Entomol.75924927Google Scholar
  9. Caresche, L.A., Wapshere, A.J. 1974Biology and host specificity of the chondrilla gall mite Aceria chondrillae (G Can.) (AcarinaEriophyidae)Bull. Entomol. Res.64183192Google Scholar
  10. Coyle, D.R., Amrine, J.W. 2004New collection records and host range of the cottonwood leaf curl miteTetra lobulifera (Keifer) (Acari: Eriophyidae), in the USAInt. J. Acarol.3038Google Scholar
  11. Cullen, J.M., Moore, A.D. 1983The influence of three populations of Aceria chondrillae on three forms of Chondrilla junceaJ. Appl. Ecol.20235243Google Scholar
  12. Lillo, E., Sobhian, R. 1994Taxonomy, distribution, and host specificity of a gall-making miteAceria tamaricis (Trotter) (Acari: Eriophyoidea), associated with Tamarix gallica L. (Parietales: Tamaricaceae) in southern FranceEntomologica (Bari)28516Google Scholar
  13. Dethier, V.G. 1954Evolution of host preference in phytophagous insectsEvolution83354Google Scholar
  14. Diehl, S.R., Bush, G.L. 1984An evolutionary and applied perspective of insect biotypesAnnu. Rev. Entomol.29471504CrossRefGoogle Scholar
  15. Dres, M., Mallet, J. 2002Host races in plant-feeding insects and their importance in sympatric speciationPhil. Trans. Roy. Soc. London Ser. B – Biol. Sci.357471492Google Scholar
  16. Efron, B., Tibshirani, R.J. 1993An Introduction to the BootstrapChapman & HallLondonGoogle Scholar
  17. Egas, M., Norde, D.-J., Sabelis, M.W. 2003Adaptive learning in arthropods: spider mites learn to distinguish food qualityExp. Appl. Acarol.30233247CrossRefPubMedGoogle Scholar
  18. Egas, M., Sabelis, M.W. 2001Adaptive learning of host preference in a herbivorous arthropodEcol. Lett.4190195CrossRefGoogle Scholar
  19. Feder, J.L., Chilcote, C.A., Bush, G.L. 1990Regional, local and microgeographic allele frequency variation between apple and hawthorn populations of Rhagoletis pomonella in western MichiganEvolution44595608Google Scholar
  20. Filchak, K.E., Feder, J.L., Roethele, J.B., Stilz, U. 1999A field test for host-plant dependent selection on larvae of the apple maggot fly, Rhagoletis pomonellaEvolution53187200Google Scholar
  21. Forister, M.L. 2005Independent inheritance of preference and performance in hybrids between host races of Mitoura butterflies (Lepidoptera: Lycaenidae)Evolution5911491155PubMedGoogle Scholar
  22. Fox, L.R., Morrow, P.A. 1981Specialization: species property or local phenomenon?Science211887893Google Scholar
  23. Freeman, T.P., Goolsby, J.A., Ozman, S.K., Nelson, D.R. 2005An ultrastructural study of the relationship between the mite Floracarus perrepae Knihinicki & Boczek (Acariformes: Eriophyidae) and the fern Lygodium microphyllum (Lygodiaceae)Aust. J. Entomol.445761CrossRefGoogle Scholar
  24. Frost, W.E. 1997Polyphenic wax production in Abacarus hystrix (Acari: Eriophyidae) and implications for migratory fitnessPhysiol. Entomol.223746Google Scholar
  25. Frost, W.E., Ridland, P.M. 1996GrassesLindquist, E.E.Sabelis, M.W.Bruin, J. eds. Eriophyoid Mites – Their Biology, Natural Enemies and ControlElsevier Science PublAmsterdam619629Google Scholar
  26. Fry, J.D. 1989Evolutionary adaptation to host plants in a laboratory population of the phytophagous mite Tetranychus urticae KochOecologia81559565CrossRefGoogle Scholar
  27. Fry, J.D. 1999The role of adaptation to host plants in the evolution of reproductive isolation: negative evidence from Tetranychus urticae KochExp. Appl. Acarol.23379387CrossRefGoogle Scholar
  28. Futuyma, D.J. 1983Selective factors in the evolution of host choice by phytophagous insectsAhman, S. eds. Herbivorous Insects: Host Seeking Behaviour and MechanismsAcademic PressNew York, USA227244Google Scholar
  29. Gibson, R.W. 1974Studies on the feeding behaviour of the eriophyoid mite Abacarus hystrixa vector of grass virusesAnn. Appl. Biol.78213217Google Scholar
  30. Gotoh, T., Bruin, J., Sabelis, M.W., Menken, S.B.J. 1993Host race formation in Tetranychus urticae: genetic differentiation, host plant preferenceand mate choice in a tomato and a cucumber strainEntomol. Exp. Appl.68171178Google Scholar
  31. Gould, F. 1979Rapid host range evolution in a population of the phytophagous mite Tetranychus urticaeEvolution33791802Google Scholar
  32. Harrington, D. P., Fleming, T.R. 1982A class of rank test procedures for censored survival dataBiometrika69553566Google Scholar
  33. Harvey, T.L., Seifers, D.L., Martin, T.J. 2001Host range differences between two strains of wheat curl mites (Acari: Eriophyidae)J. Agric. Urban Entomol.183541Google Scholar
  34. Herbert, H.J. 1974Notes on the biology of the apple rust mite Aculus schlechtendali (Prostigmata: Eriophyoidea), and its density on several cultivars of apple in Nova ScotiaCan. Entomol.10610351038Google Scholar
  35. Hong, X.Y., Ji, J, Ma, J.X., Dong, H.Q. 1998Test of host plant suitability of the tea pink miteAcaphylla theae (Eriophyoidea: Eriophyidea), at different temperaturesSyst. Appl. Acarol.36368Google Scholar
  36. Horner, J.D., Craig, T.P., Itami, J.K. 1999The influence of oviposition phenology on survival in host races of Eurosta solidaginisEntomol. Exp. Appl.93121129CrossRefGoogle Scholar
  37. Hosmer, D.W., Lemeshow, S. 1999Applied Survival Analysis: Regression Modeling of Time EventWileyNew YorkGoogle Scholar
  38. Ikonen, A., Sipura, M., Miettinen, S., Tahvanainen, J. 2003Evidence for host race formation in the leaf beetle Galerucella lineolaEntomol. Exp. Appl.108179185CrossRefGoogle Scholar
  39. Jaenike, J. 1981Criteria for ascertaining the existence of host racesAm. Nat.117830834CrossRefGoogle Scholar
  40. Jaenike, J. 1990Host specialization in phytophagous insectsAnnu. Rev. Ecol. Syst.21243237CrossRefGoogle Scholar
  41. Johnson, P.A., Hoppensteadt, F.C., Smith, J.J., Bush, G.L. 1996Conditions for sympatric speciation: a diploid model incorporating habitat fidelity and non-habitat assortative matingEvol. Ecol.10187205CrossRefGoogle Scholar
  42. Kennedy, C.E.J. 1986Attachment may be a basic for specialization in oak aphidsEcol. Entomol.11291300Google Scholar
  43. Kondrashov, A.S., Mina, M.V. 1986Sympatric speciation: when is it possibleBiol. J. Linn. Soc.27201223Google Scholar
  44. Krantz, G.W., Lindquist, E.E. 1979Evolution of phytophagous mites (Acari)Annu. Rev. Entomol.24121158CrossRefGoogle Scholar
  45. Lindquist, E.E., Oldfield, G.N. 1996Evolution of eriophyoid mites in relation to their host plantsLindquist, E.ESabelis, M.W.Bruin, J. eds. Eriophyoid Mites – Their Biology, Natural Enemies and ControlElsevier Science PublAmsterdam277300Google Scholar
  46. Littlefield J.L. and Sobhian R. 2000. The host specificity of Phyllocoptes nevadensis Roivainen (Acari: Eriophyidae), a candidate for the biological control of leafy and cypress spurges. In: Spencer Neal R. (eds), Proceedings of the X International Symposium on Biological Control of Weeds, 4–14 July 1999, Montana State University, Bozeman, MontanaUSApp. 621–626.Google Scholar
  47. Maynard Smith, J. 1966Sympatric speciationAm. Nat.100637650Google Scholar
  48. Nault, L.R., Styer, W.E. 1969The dispersal of Aceria tulipaethree other grass-infesting eriophyid mites in OhioAnn. Entomol. Soc. Am.6214461455Google Scholar
  49. Oldfield, G.N. 1996Diversity and host specificityLindquist, E.E.Sabelis, M.W.Bruin, J. eds. Eriophyoid Mites – Their Biology, Natural Enemies and ControlElsevier Science PublAmsterdam199216Google Scholar
  50. Oldfield, G.N., Proeseler, G. 1996Eriophyoid mites as vectors of plant pathogensLindquist, E.E.Sabelis, M.W.Bruin, J. eds. Eriophyoid Mites – Their Biology, Natural Enemies and ControlElsevier Science PublAmsterdam259273Google Scholar
  51. Petanovic, R.U. 1990Host specificity and morphological variation in Epitrimerus taraxaci Liro (Acarida: Eriophyoidea)Zastita Bilja41387394Google Scholar
  52. Price, P.W., Bouton, C.E., Gross, P., McPherson, B.A., Thomson, J.N., Weiss, A.E. 1980Interactions among three trophic level: influence of plant on interactions between insect herbivores and natural enemiesAnnu. Rev. Ecol. Syst.114165CrossRefGoogle Scholar
  53. Sabelis, M.W., Bruin, J. 1996Evolutionary ecology: life history patterns, food plant choice and dispersalLindquist, E.ESabelis, M.W.Bruin, J. eds. Eriophyoid Mites – Their Biology, Natural Enemies and ControlElsevier Science PublAmsterdam329365Google Scholar
  54. Shevchenko, V.G., DeMillo, A.P., Razvyazkina, G.M., Kapova, E.A. 1970Taxonomic similarity of the closely related mites Aceria tulipae Keif. and A. tritici sp. n. (AcarinaEriophyidae) – vectors of the onion and wheat virusesZool. Z.49224235Google Scholar
  55. Skoracka, A. 2004Eriophyid mites from grasses in Poland (Acari: Eriophyoidea)Genus131205Google Scholar
  56. Skoracka, A., Kuczyński, L. 2004Demography of the cereal rust mite Abacarus hystrix (Acari: Eriophyoidea) on quack grassExp. Appl. Acarol.32231242CrossRefPubMedGoogle Scholar
  57. Skoracka A. and Kuczyński L. 2005. Variation in host acceptance behavior in the cereal rust mite - the evidence of host races. XXIX Ethological ConferenceAbstracts, BudapestHungary, August 20–27, p. 205.Google Scholar
  58. Skoracka, A., Kuczyński, L., Magowski, W. 2002Morphological variation in different host populations of Abacarus hystrix (Nalepa1896) (Acari: Prostigmata: Eriophyoidea)Exp. Appl. Acarol.26187193CrossRefPubMedGoogle Scholar
  59. Smith Meyer, M.K.P. 1981Mite Pests of Crops in Southern Africa. Science Bulletin No 397Plant Protection Research InstitutePrivate Bag X134PretoriaSouth Africa92 pp.Google Scholar
  60. Sobhian, R., Katsoyannos, B.I., Kashefi, J. 1989Host specificity of Aceria centaureae (Nalepa), a candidate for biological control of Centaurea diffusa De LamarckEntomol. Hellen.72730Google Scholar
  61. Sobhian, R., McClay, A., Hasan, S., Peterschmitt, R., Hughes, R.B. 2004Safety assessment and potential of Cecidophyes rouhollahi (AcariEriophyidae) for biological control of Galium spurium (Rubiaceae) in North AmericaJ. Appl. Entomol.128258266CrossRefGoogle Scholar
  62. Sobhian, R., Tunc, I., Erler, F. 1999Preliminary studies on the biology and host specificity of Aceria salsolae DeLillo and Sobhian (Acari: Eriophyidae) and Lixus salsolae Becker (Col., Curculionidae), two candidates for biological control of Salsola kaliJ. Appl. Entomol.123205209CrossRefGoogle Scholar
  63. Sukhareva, S.I. 1981The structure of the four most distributed eriophyid mites (Acarina: Tetrapodili) from grasses: Aceria tritici Shev., Aculodes mckenziei (K), Aculodes dubius (Nal.), Abacarus hystrix (Nal.)Vestnik Leningradskogo Univ. [in Russian]152536Google Scholar
  64. Vaneckova-Skuhrava, I. 1996Eriophyid mites (Acari: Eriophyoidea) on trees and shrubs in the Czech RepublicActa Soc. Zool. Bohem.60223246Google Scholar
  65. Via, S. 1999Reproductive isolation between sympatric races of pea aphids. I. Gene flow restriction and habitat choiceEvolution5314461457Google Scholar
  66. Ward, S.A., Leather, S.R., Pickup, J., Harrington, R. 1998Mortality during dispersal and the coast of host-specificity in parasites: how many aphids find hosts?J. Anim. Ecol.67763773CrossRefGoogle Scholar
  67. Waring, G.L., Abrahamson, W.G., Howard, D.J. 1990Genetic differentiation among host-associated populations of the gallmaker Eurosta solidaginis (DipteraTephritidae)Evolution4416481655Google Scholar
  68. Yano, S., Wakabayashi, M., Takabayashi, J., Takafuji, A. 1998Factors determining the host plant range of the phytophagous miteTetranychus urticae (Acari: Tetranychidae): a method for quantifying host plant acceptanceExp. Appl. Acarol.22595601CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Department of Animal Taxonomy and Ecology, Institute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland
  2. 2.Department of Avian Biology and Ecology, Institute of Environmental BiologyAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations