Experimental & Applied Acarology

, Volume 36, Issue 3, pp 165–176 | Cite as

Adaptation in the Asexual False Spider Mite Brevipalpus phoenicis: Evidence for Frozen Niche Variation

  • Thomas V.M. GrootEmail author
  • Arne Janssen
  • Angelo Pallini
  • Johannes A.J. Breeuwer


Because asexual species lack recombination, they have little opportunity to produce genetically variable offspring and cannot adapt to changes in their environment. However, a number of asexual species are very successful and appear to contradict this general view. One such species is the phytophagous mite Brevipalpus phoenicis (Geijskes), a species that is found in a wide range of environments. There are two general explanations for this pattern, the General Purpose Genotype (GPG) and Frozen Niche Variation (FNV). According to the GPG model, an asexual species consists of clones that can all survive and reproduce in all the different niches. Alternatively, the FNV model postulates that different clones are specialized to different niches. We have performed a test to distinguish between these models in B. phoenicis. Mites from three populations from three different host plant species (citrus, hibiscus and acerola) were transplanted to their own and the two alternative host plants and mite survival and egg production were measured. Additionally, the mite populations were genotyped using microsatellites. Fitness was seriously reduced when mites were transplanted to the alternative host plant species, except when the alternative host was acerola. We concluded that B. phoenicis clones are specialized to different niches and thus the FNV best describes the broad ecological niche of this species but that there is also some evidence for host plant generalization. This conclusion was strengthened by the observations that on each host plant species the native mite population performed better than the introduced ones, and that three microsatellite markers showed that the mite populations are genetically distinct.


Adaptation Asexual reproduction Brevipalpus Frozen niche variation General purpose genotype Tenuipalpidae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agrawal, A.A., Vala, F., Sabelis, M.W. 2002Induction of preference and performance after acclimation to novel hosts in a phytophagous spider mite: adaptive plasticity?Am. Nat.159553565CrossRefGoogle Scholar
  2. Barton, N.H., Charlesworth, B. 1998Why sex and recombination?Science28119861990PubMedGoogle Scholar
  3. Browne, R.A., Hoopes, C.W. 1990Genotype diversity and selection in asexual brine shrimpEvolution33848859Google Scholar
  4. Campos, F.J., Omoto, C. 2002Resistance to hexythiazox in Brevipalpus phoenicis (Acari: Tenuipalpidae) from Brazilian citrusExp. Appl. Acarol.26243251PubMedGoogle Scholar
  5. Carey, J.R. 1993Applied Demography for Biologists with Special Emphasis on InsectsOxford University PressOxfordGoogle Scholar
  6. Chiavegato, L.G. 1986Biologia do acaro Brevipalpus phoenicis em citrosPesquisas Agropecuaria Brasileira21813816Google Scholar
  7. Childers, C.C., Rodrigues, J.C.V., Welbourn, W.C. 2003Host plants of Brevipalpus californicus, B. obovatusB. phoenicis (Acari: Tenuipalpidae) and their potential involvement in the spread of viral diseases vectored by these mitesExp. Appl. Acarol.3029105PubMedGoogle Scholar
  8. Doncaster, C.P., Pound, G.E., Cox, S.J. 2000The ecological cost of sexNature404281285PubMedGoogle Scholar
  9. Fox, J.A., Dybdahl, M.F., Jokela, J., Lively, C.M. 1996Genetic structure for coexisting sexual and clonal subpopulations in a freshwater snail (Potamopyrgus antipodarum)Evolution5015411548Google Scholar
  10. Gonzalez, R.H. 1975Revision of the Brevipalpus phoenici ȁ8complexȁ9 with descriptions of new species from Chile and Thailand (AcarinaTenuipalpidae)AcarologiaXVII8191Google Scholar
  11. Gray, M.M., Weeks, S.C. 2001Niche breath in clonal and sexual fish (Poeciliopsis): a test for the frozen niche variation modelCan. J. Fish. Aquat. Sci.5813131318CrossRefGoogle Scholar
  12. Helle, W., Bolland, H.R., Heitmans, W.R.B. 1980Chromosomes and types of parthenogenesis in the false spider mites (Acari: Tenuipalpidae)Genetica544550CrossRefGoogle Scholar
  13. Hurst, L.D., Peck, J.R. 1996Recent advances in understanding of the evolution and maintenance of sexTrends Ecol. Evol.114652CrossRefGoogle Scholar
  14. Jacobsen, R., Forbes, V.E. 1997Clonal variation in life-history traits and feeding rates in the gastropodPotamopyrgus antipodarum: performance across a salinity gradientFunct. Ecol.11260267CrossRefGoogle Scholar
  15. Jaenike, J. 1990Host specialization in phytophagous insectsAnnu. Rev. Ecol. Syst.21243273CrossRefGoogle Scholar
  16. Jokela, J., Dybdahl, M.F., Lively, C.M. 1999Habitat-specific variation in life-history traits, clonal population structure and parasitism in a freshwater snail (Potamopyrgus antipodarum)J. Evol. Biol.12350360CrossRefGoogle Scholar
  17. Jokela, J., Lively, C.M., Fox, J.A., Dybdahl, M.F. 1997Flat reaction norms and ȁ8frozenȁ9 phenotypic variation in clonal snails (Potamopyrgus antipodarum)Evolution5111201129Google Scholar
  18. Kassen, R. 2002The experimental evolution of specialists, generalists, and the maintenance of diversityJ. Evol. Biol.15173190CrossRefGoogle Scholar
  19. Kennedy, J.S. 1995Functional ecology of the false spider miteBrevipalpus phoenicis (Geijskes)Université Catholique de LouvainLouvain-la-NeuveDissertationGoogle Scholar
  20. Lima, N.R.W. 1998Genetic analysis of predatory efficiency in natural and laboratory made hybrids of Poeciliopsis (Pisces: Poeciliidae)Behaviour1358398Google Scholar
  21. Lynch, M. 1984Destabilizing hybridization, general-purpose genotypes and geographical parthenogenesisQuart. Rev. Biol.59257290CrossRefGoogle Scholar
  22. Maraun, M., Heethoff, M., Scheu, S., Norton, R.A., Weigmann, G., Thomas, R.H. 2003Radiation in sexual and parthenogenetic oribatid mites (OribatidaAcari) as indicated by genetic divergence of closely related speciesExp. Appl. Acarol.29265277PubMedGoogle Scholar
  23. Mark Welch, D.B., Meselson, M.S. 2000Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchangeScience28812111215PubMedGoogle Scholar
  24. Myers, M.J., Meyer, C.P., Resh, V.H. 2000Neritid and thiarid gastropods from French Polynesian streams: how reproduction (sexual, parthenogenetic) and dispersal (activepassive) affect population structureFreshwater Biol.44535545CrossRefGoogle Scholar
  25. Norton, R.A., Kethley, J.B., Johnston, D.E., Oȁ9connor, B.M. 1993Phylogenetic perspectives on genetic systems and reproductive modes of mitesWrensch, D.L.Ebbert, M.A. eds. Evolution and Diversity of Sex Ratio in Insects and MitesChapman and HallNew York899Google Scholar
  26. Oliver, J.H.J. 1971Parthenogenesis in mites and ticks (Arachnida: Acari)Am. Zool.11283299Google Scholar
  27. Omoto, C. 1998Acaricide resistance management of leprosis mite (Brevipalpus phoenicis) in Brazilian citrusPestic. Sci.52189191CrossRefGoogle Scholar
  28. Parker, E.D.J., Niklasson, M. 2000Genetic structure and evolution in parthenogenetic animalsSingh, R.Krimbas, C. eds. Evolutionary Genetics from Molecules to MorphologyCambridge Univesity PressCambridge456474Google Scholar
  29. Pijnacker, L.P., Ferwerda, M.A., Helle, W. 1981Cytological investigations on the female and male reproductive system of the parthenogenetic privet mite Brevipalpus obovatus Donnadieu (PhytoptipalpidaeAcari)Acarologia22157163Google Scholar
  30. Rice, W.R. 2002Experimental test of the adaptive significance of sexual recombinationNat. Rev. Genet.3241251PubMedGoogle Scholar
  31. Schlosser, I.J., Doeringsfeld, M.R., Elder, J.F., Arzayus, L.F. 1998Niche relationships of clonal and sexual fish in a heterogeneous landscapeEcology79953968Google Scholar
  32. Statsoft Inc. Statistica 6.0. 2300 East 14th StreetTulsaOK 74104, USA.Google Scholar
  33. Statsoft Inc. Statistica 6.0. 2300 East 14th StreetTulsaOK 74104, USA.Google Scholar
  34. Van Doninck, K., Schon, I., De Bruyn, L., Martens, K. 2002A general purpose genotype in an ancient asexualOecologia132205212CrossRefGoogle Scholar
  35. Vrijenhoek, R.C. 1979Factors affecting clonal diversity and coexistenceAm. Zool.19787797Google Scholar
  36. Vrijenhoek, R.C. 1998Animal clones and diversity – Are natural clones generalists or specialists?Bioscience48617629Google Scholar
  37. Vrijenhoek, R.C., Pfeiler, E. 1997Differential survival of sexual and asexual Poeciliopsis during environmental stressEvolution5115931600Google Scholar
  38. Weeks, A.R., Marec, F., Breeuwer, J.A.J. 2001A mite species that consists entirely of haploid femalesScience29224792482PubMedGoogle Scholar
  39. Zchori-Fein, E., Perlman, S.J., Kelly, S.E., Katzir, N., Hunter, M.S. 2004Characterization of a Bacteriodetes symbiont in Encarsia wasps (Hymenoptera: Aphelinidae): proposal of ȁ8Candidatus Cardinium hertigiiȁ9Int. J. Syst. Evol. Microbiol.54961968PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Thomas V.M. Groot
    • 1
    Email author
  • Arne Janssen
    • 1
  • Angelo Pallini
    • 2
  • Johannes A.J. Breeuwer
    • 1
  1. 1.Institute for Biodiversity and Ecosystem Dynamics, Sections Population Biology and Evolutionary BiologyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.DBA-EntomologyFederal University of ViçosaBrasil

Personalised recommendations