Advertisement

Experimental & Applied Acarology

, Volume 37, Issue 1–2, pp 93–105 | Cite as

Systemic Use of Spinosad to Control the Two-spotted Spider Mite (Acari: Tetranychidae) on Tomatoes Grown in Rockwool

  • T. van Leeuwen
  • W. Dermauw
  • M.  Van De Veire
  • L. Tirry
Article

Abstract

Spinosad is a reduced-risk insecticide derived as a fermentation product from the soil actinomycete Saccharopolyspora spinosa. It is toxic by ingestion and contact and has a unique mode of action on the insect nervous system. Spinosad exhibits a high degree of selective toxicity towards the insect orders Lepidoptera, Diptera and Thysanoptera, but is less toxic to many beneficial arthropods. To determine if spinosad could be valuable as an alternative acaricide for the control of Tetranychus urticae, laboratory toxicity experiments with leaf-disk bio-assays were performed on a laboratory susceptible and several resistant strains. LC50 values were rather high in comparison with newly developed commercial acaricides. Surprisingly, when spinosad was applied to the roots of tomato plants in rock wool, excellent control of spider mites was obtained. Apparently, spinosad has systemic properties and quantities as low as 1 mg/plant could protect tomato plants from mite infestation. Different substrates with varying percentage of clay and organic matter were tested in comparison with rockwool and showed that sufficient control was restricted to the rockwool substrate. Consequently, a dose–response experiment with tomato plants grown in rockwool was set up. The persistence of spinosad toxicity when applied via the roots was determined, and pointed to a long lasting control (up to 30 DAT). Spinosad amounts in leaves after systemic application were determined with an immunological technique to quantify spinosad uptake. Correlations between mite control, spinosad uptake and leaf concentrations can be helpful to determine the necessary dose in field situations.

Keywords

Spinosad Systemic Tetranychus urticae Toxicity Xylem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, W.S. 1925A method for computing the effectiveness of an insecticideJ. Econ. Entomol.18265267Google Scholar
  2. Bret, B.L., Larson, L.L., Schoonover, J.R., Sparks, T.C., Thompson, G.D. 1997Biological properties of spinosadDown To Earth52613Google Scholar
  3. Briggs, G.G., Bromilov, R.H., Evans, A.A. 1982Relationship between lipophilicity and root uptake and translocation on non-ionised chemicals by barleyPest. Sci.13495504Google Scholar
  4. Briggs, G.G., Rigitano, R.L.O., Bromilow, R.H. 1987Physiochemical factors affecting the uptake by roots and translocation to shoots of weak acids in barleyPest. Sci.19101112Google Scholar
  5. Copping, L.G., Menn, J.J. 2000Biopesticides: a review of their action, application and efficacyPest Manag. Sci.56651667CrossRefGoogle Scholar
  6. Cowles, R.S., Cowles, E.A., McDermott, A.M., Ramoutar, D. 2000“Inert” formulation ingredients with activity: toxicity of trisiloxane surfactant solutions to twospotted spider mites (Acari : Tetranychidae)J. Econ. Entomol.93180188PubMedGoogle Scholar
  7. Cowles, R.S. 1998Effect of spinosad formulations and other miticides on twospotted spider miteArthr. Manag. Tests23342343Google Scholar
  8. Cranham, J.E., Helle, W. 1985Pesticide resistance in TetranychidaeHelle, W.Sabelis, M.W. eds. Spider Mites, their Biology, Natural Enemies and Control, volume 1BElsevierAmsterdam458Google Scholar
  9. Crouse, G.D., Sparks, T.C., Schoonover, J., Gifford, J., Dripps, J., Bruce, T., Larson, L.L., Garlich, J., Hatton, C., Hill, R.L., Worden, T.V., Martynow, J.G. 2001Recent advances in the chemistry of spinosynsPest Manag. Sci.57177185CrossRefPubMedGoogle Scholar
  10. Denholm, I., Rowland, M.W. 1992Tactics for managing pesticide resistance in arthropods: theory and practiceAnn. Rev. Entomol.3791112CrossRefGoogle Scholar
  11. Ferguson, J.S. 2004Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to cryomazineabamectine and spinosadJ. Econ. Entomol.97112119PubMedGoogle Scholar
  12. Inoue, J., Chamberlain, K., Bromilow, R.H. 1998Physicochemical factors affecting the uptake by roots and translocation to shoots of amine bases in barleyPestic. Sci.54821CrossRefGoogle Scholar
  13. Kageyama, Y., Konishi, K. 1988Morphological and Physiological characteristics of tomato plans grown in nutrient solution in comparison with those grown in soilJ. Japan. Hort. Sci.57408417Google Scholar
  14. Kollman, W.S. 2002Environmental fate of SpinosadDepartment of Pesticide RegulationSacramentoCalifornia15Google Scholar
  15. Salgado, V.L. 1998Studies on the mode of action of spinosad: insect symptoms and physiological correlatesPestic. Biochem. Physiol.6091102CrossRefGoogle Scholar
  16. Saunders, D.G., Bret, B.L. 1997Fate of spinosad in the environmentDown To Earth.521420Google Scholar
  17. Sayyed, A.H., Omar, D., Wright, D.J. 2004Genetics of spinosad resistance in a multi-resistant field selected population of Plutella xylostellaPest Manag. Sci.60827832CrossRefPubMedGoogle Scholar
  18. Sparks, T.C., Thompson, G.D., Kirst, H.A., Hertlein, M.B., Mynderse, J.S., Turner, J.R., Worden, T.V. 1998Fermentation-derived insect control agents the spinosynsHall, F.R.Menn, J.J. eds. Biotechnology, Biopesticides: Use and DeliveryHumana PressTotowa, NewYork171188Google Scholar
  19. Sparks, T.C., Thompson, G.D., Larson, L.L., Kirst, H.A., Jantz, O.K., Worden, T.V., Hertlein, M.B., Busacca, J.D. 1995Biological characteristics of the spionosyns: a new naturally derived insect control agentProc. Beltwide Cotton Conf.2903907Google Scholar
  20. Tedeschi, A., Alma, A., Tavella, L. 2001Side-effects of three neem (Azadirachta indica A. Juss) products on the predator Macrolophus caliginosus Wagner (Het., Miridae)J. Appl. Entomol125397402CrossRefGoogle Scholar
  21. Thompson, G.D., Michel, K.H., Yao, R.C., Mynderse, J.S., Mosburg, C.T., Worden, T.V., Chio, E.H., Sparks, T.C., Hutchins, S.H. 1997The discovery of Saccharopolyspora spinosaa new class of insect control productsDown To Earth5215Google Scholar
  22. Thompson, G.D., Dutton, R, Sparks, T. 2000Spinosad  – a case study: an example from a natural products discovery programmaPest Manag. Sci.56696702CrossRefGoogle Scholar
  23. Thompson, G.D. 2002Fate of spinosad in litter and soils of a mixed conifer stand in the acadian forest region of New BrunswickJ. Agric. Food Chem.50790795CrossRefPubMedGoogle Scholar
  24. Van Leeuwen, T., Stillatus, V., Tirry, L. 2004Genetic analysis and cross-resistance spectrum of a laboratory-selected chlorfenapyr resistant strain of two-spotted spider mite (Acari: TetranychidaeExp. Appl. Acarol.32249261CrossRefPubMedGoogle Scholar
  25. Van Leeuwen, T., Van Pottelberge, S., Tirry, L. 2005Comparative acaricide susceptibility and detoxifying enzyme activities in a field collected resistant and susceptible strain of Tetranychus urticaePest Manag. Sci.61499507CrossRefPubMedGoogle Scholar
  26. Williams, T., Valle, J., Viñuela, E. 2003Is the naturally derived insecticide spinosad ® compatible with insect natural ennemies?Biocontrol Science and Technology13459479CrossRefGoogle Scholar
  27. Young, D.L., Mihaliak, C.A., West, S.D., Hanselman, K.A., Collins, R.A., Philips, A.M., Robb, C.K. 2000Determination of spinosad and its metabolites in food and environmental matricesJ. Agric. Food Chem.4851465153CrossRefPubMedGoogle Scholar
  28. Zhao, J.Z., Li, Y.X., Collins, H.L., Gusukuma-Minuto, L., Mau, R.F.L., Thompson, G.D., Shelton, A.M. 2002Monitoring and characterization of diamond back moth (Lepidoptera) resistance to spinosadJ. Econ. Entomol.95430436PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • T. van Leeuwen
    • 1
  • W. Dermauw
    • 1
  • M.  Van De Veire
    • 1
  • L. Tirry
    • 1
  1. 1.Department of Crop Protection, Bioscience EngineeringGhent UniversityGhentBelgium

Personalised recommendations