Applications of Mathematics

, Volume 61, Issue 3, pp 287–298

# Several notes on the circumradius condition

• Václav Kučera
Article

## Abstract

Recently, the so-called circumradius condition (or estimate) was derived, which is a new estimate of the W 1,p -error of linear Lagrange interpolation on triangles in terms of their circumradius. The published proofs of the estimate are rather technical and do not allow clear, simple insight into the results. In this paper, we give a simple direct proof of the p = ∞ case. This allows us to make several observations such as on the optimality of the circumradius estimate. Furthermore, we show how the case of general p is in fact nothing more than a simple scaling of the standard O(h) estimate under the maximum angle condition, even for higher order interpolation. This allows a direct interpretation of the circumradius estimate and condition in the context of the well established theory of the maximum angle condition.

## Keywords

finite element method a priori error estimate circumradius condition Lagrange interpolation

65N30 65D05

## References

1. [1]
I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.
2. [2]
R. E. Barnhill, J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215–229.
3. [3]
P.G. Ciarlet: The finite element method for elliptic problems. Studies in Mathematics and Its Applications. Vol. 4, North-Holland Publishing Company, Amsterdam, 1978.Google Scholar
4. [4]
P. J. Davis: Interpolation and Approximation. Dover Books on Advanced Mathematics, Dover Publications, New York, 1975.
5. [5]
A. Hannukainen, S. Korotov, M. Krížek: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79–88.
6. [6]
P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1, (1976), 43–60. (In French.)
7. [7]
K. Kobayashi: On the interpolation constants over triangular elements. RIMS Kokyuroku 1733 (2011), 58–77. (In Japanese.)Google Scholar
8. [8]
K. Kobayashi, T. Tsuchiya: A Babuška-Aziz type proof of the circumradius condition. Japan. J. Ind. Appl. Math. 31 (2014), 193–210.
9. [9]
K. Kobayashi, T. Tsuchiya: A priori error estimates for Lagrange interpolation on triangles. Appl. Math., Praha 60 (2015), 485–499.
10. [10]
M. Krížek: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223–232.
11. [11]
V. Kucera: On necessary and sufficient conditions for finite element convergence. Submitted to Numer. Math. http://arxiv.org/abs/1601.02942 (preprint).Google Scholar
12. [12]
A. Rand: Delaunay refinement algorithms for numerical methods. Ph.D. thesis, www.math.cmu.edu/~arand/papers/arand thesis.pdf, Carnegie Mellon University, 2009.Google Scholar
13. [13]
A. Ženíšek: The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 (1969), 355–376. (In Czech.) zbl
14. [14]
M. Zlámal: On the finite element method. Numer. Math. 12 (1968), 394–409.