Applications of Mathematics

, Volume 61, Issue 3, pp 287–298 | Cite as

Several notes on the circumradius condition

  • Václav Kučera


Recently, the so-called circumradius condition (or estimate) was derived, which is a new estimate of the W 1,p -error of linear Lagrange interpolation on triangles in terms of their circumradius. The published proofs of the estimate are rather technical and do not allow clear, simple insight into the results. In this paper, we give a simple direct proof of the p = ∞ case. This allows us to make several observations such as on the optimality of the circumradius estimate. Furthermore, we show how the case of general p is in fact nothing more than a simple scaling of the standard O(h) estimate under the maximum angle condition, even for higher order interpolation. This allows a direct interpretation of the circumradius estimate and condition in the context of the well established theory of the maximum angle condition.


finite element method a priori error estimate circumradius condition Lagrange interpolation 

MSC 2010

65N30 65D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Babuška, A. K. Aziz: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    R. E. Barnhill, J. A. Gregory: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215–229.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    P.G. Ciarlet: The finite element method for elliptic problems. Studies in Mathematics and Its Applications. Vol. 4, North-Holland Publishing Company, Amsterdam, 1978.Google Scholar
  4. [4]
    P. J. Davis: Interpolation and Approximation. Dover Books on Advanced Mathematics, Dover Publications, New York, 1975.zbMATHGoogle Scholar
  5. [5]
    A. Hannukainen, S. Korotov, M. Krížek: The maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. 120 (2012), 79–88.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    P. Jamet: Estimations d’erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1, (1976), 43–60. (In French.)MathSciNetzbMATHGoogle Scholar
  7. [7]
    K. Kobayashi: On the interpolation constants over triangular elements. RIMS Kokyuroku 1733 (2011), 58–77. (In Japanese.)Google Scholar
  8. [8]
    K. Kobayashi, T. Tsuchiya: A Babuška-Aziz type proof of the circumradius condition. Japan. J. Ind. Appl. Math. 31 (2014), 193–210.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K. Kobayashi, T. Tsuchiya: A priori error estimates for Lagrange interpolation on triangles. Appl. Math., Praha 60 (2015), 485–499.MathSciNetzbMATHGoogle Scholar
  10. [10]
    M. Krížek: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223–232.MathSciNetzbMATHGoogle Scholar
  11. [11]
    V. Kucera: On necessary and sufficient conditions for finite element convergence. Submitted to Numer. Math. (preprint).Google Scholar
  12. [12]
    A. Rand: Delaunay refinement algorithms for numerical methods. Ph.D. thesis, thesis.pdf, Carnegie Mellon University, 2009.Google Scholar
  13. [13]
    A. Ženíšek: The convergence of the finite element method for boundary value problems of the system of elliptic equations. Apl. Mat. 14 (1969), 355–376. (In Czech.) zblMathSciNetzbMATHGoogle Scholar
  14. [14]
    M. Zlámal: On the finite element method. Numer. Math. 12 (1968), 394–409.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePraha 8Czech Republic

Personalised recommendations