Applications of Mathematics

, Volume 61, Issue 3, pp 253–286 | Cite as

An adaptive finite element method in reconstruction of coefficients in Maxwell’s equations from limited observations

  • Larisa Beilina
  • Samar Hosseinzadegan


We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell’s system using limited boundary observations of the electric field in 3D.

We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.


Maxwell’s system coefficient inverse problem Tikhonov functional Lagrangian approach a posteriori error estimate 

MSC 2010

65M06 65N30 65M60 65M22 65M32 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Assous, P. Degond, E. Heintze, P. A. Raviart, J. Segre: On a finite-element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993), 222–237.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    A. B. Bakushinsky, M.Y. Kokurin, A. Smirnova: Iterative Methods for Ill-Posed Problems. An Introduction. Inverse and Ill-Posed Problems Series 54, Walter de Gruyter, Berlin, 2011.zbMATHGoogle Scholar
  3. [3]
    L. Beilina: Adaptive hybrid FEM/FDM methods for inverse scattering problems. Inverse Problems and Information Technologies, V.1, N.3 (2002), 73–116.Google Scholar
  4. [4]
    L. Beilina: Adaptive finite element method for a coefficient inverse problem for Maxwell’s system. Appl. Anal. 90 (2011), 1461–1479.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    L. Beilina: Energy estimates and numerical verification of the stabilized domain decomposition finite element/finite difference approach for time-dependent Maxwell’s system. Cent. European J. Math. 11 (2013), 702–733, DOI 10.2478/s11533-013-0202-3.MathSciNetzbMATHGoogle Scholar
  6. [6]
    L. Beilina, M. Cristofol, K. Niinimäki: Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations. Inverse Probl. Imaging 9 (2015), 1–25.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    L. Beilina, S. Hosseinzadegan: An adaptive finite element method in reconstruction of coefficients in Maxwell’s equations from limited observations. ArXiv:1510.07525 (2015).Google Scholar
  8. [8]
    L. Beilina, M.V. Klibanov: Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. Springer, New York, 2012.CrossRefzbMATHGoogle Scholar
  9. [9]
    L. Beilina, M.V. Klibanov, M.Yu. Kokurin: Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem. J. Math. Sci., New York 167 (2010), 279–325; translation from Probl. Mat. Anal. 46 (2010), 3–44. (In Russian original.)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    L. Beilina, N.T. Thành, M.V. Klibanov, J. B. Malmberg: Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity. Inverse Probl. 30 (2014), 28 pages, Article ID 105007.zbMATHGoogle Scholar
  11. [11]
    M. Bellassoued, M. Cristofol, E. Soccorsi: Inverse boundary value problem for the dynamical heterogeneous Maxwell’s system. Inverse Probl. 28 (2012), 18 pages, Article ID 095009.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S.C. Brenner, L.R. Scott: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15, Springer, Berlin, 2002.CrossRefzbMATHGoogle Scholar
  13. [13]
    P. Ciarlet, H. Wu, J. Zou: Edge element methods for Maxwell’s equations with strong convergence for Gauss’ laws. SIAM J. Numer. Anal. 52 (2014), 779–807.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    G.C. Cohen: Higher Order Numerical Methods for Transient Wave Equations. Scientific Computation, Springer, Berlin, 2002.CrossRefzbMATHGoogle Scholar
  15. [15]
    R. Courant, K. Friedrichs, H. Lewy: On the partial difference equations of mathematical physics. IBM J. Res. Dev. 11 (1967), 215–234.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    H.W. Engl, M. Hanke, A. Neubauer: Regularization of Inverse Problems. Mathematics and Its Applications 375, Kluwer Academic Publishers, Dordrecht, 1996.CrossRefzbMATHGoogle Scholar
  17. [17]
    K. Eriksson, D. Estep, C. Johnson: Applied Mathematics: Body and Soul. Vol. 3. Calculus in Several Dimensions. Springer, Berlin, 2004.CrossRefzbMATHGoogle Scholar
  18. [18]
    S. Hosseinzadegan: Iteratively regularized adaptive finite element method for reconstruction of coefficients in Maxwell’s system. Master’s Thesis in Applied Mathematics, Department ofMathematical Sciences, Chalmers University of Technology and Gothenburg University, 2015.Google Scholar
  19. [19]
    K. Ito, B. Jin, T. Takeuchi: Multi-parameter Tikhonov regularization. Methods Appl. Anal. 18 (2011), 31–46.MathSciNetzbMATHGoogle Scholar
  20. [20]
    C. Johnson, A. Szepessy: Adaptive finite element methods for conservation laws based on a posteriori error estimates. Commun. Pure Appl. Math. 48 (1995), 199–234.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M.V. Klibanov, A. B. Bakushinsky, L. Beilina: Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess. J. Inverse Ill-Posed Probl. 19 (2011), 83–105.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    M. Krížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics 50, Longman Scientific & Technical, Harlow; John Wiley & Sons, New York, 1990.zbMATHGoogle Scholar
  23. [23]
    O. A. Ladyzhenskaya: The Boundary Value Problems of Mathematical Physics. Springer, New York, 1985.CrossRefzbMATHGoogle Scholar
  24. [24]
    J. B. Malmberg: A posteriori error estimation in a finite element method for reconstruction of dielectric permittivity. ArXiv:1502.07658 (2015).Google Scholar
  25. [25]
    J. B. Malmberg: A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell’s system. Inverse Problems and Applications (L.Beilina, ed.). Selected Papers Based on the Presentations at the Third AnnualWorkshop on Inverse Problems, Stockholm, 2013, Springer Proceedings in Mathematics and Statistics 120, 2015, pp. 43–53.MathSciNetzbMATHGoogle Scholar
  26. [26]
    C.D. Munz, P. Omnes, R. Schneider, E. Sonnendrücker, U.Voß: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161 (2000), 484–511.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    PETSc, Portable, Extensible Toolkit for Scientific Computation. http://www.mcs.anl. gov/petsc/.Google Scholar
  28. [28]
    O. Pironneau: Optimal Shape Design for Elliptic Systems. Springer Series in Computational Physics, Springer, New York, 1984.CrossRefzbMATHGoogle Scholar
  29. [29]
    L.R. Scott, S. Zhang: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990), 483–493.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    D.R. Smith, S. Schultz, P. Markoš, C.M. Soukoulis: Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65 (2002), DOI:10.1103/PhysRevB.65.195104.Google Scholar
  31. [31]
    A. N. Tikhonov, A.V. Goncharskiy, V.V. Stepanov, I.V. Kochikov: Ill-posed problems of the image processing. DAN USSR 294 (1987), 832–837.MathSciNetGoogle Scholar
  32. [32]
    A. N. Tikhonov, A.V. Goncharsky, V.V. Stepanov, A.G. Yagola: Numerical Methods for the Solution of Ill-Posed Problems. Rev. Mathematics and Its Applications 328, Kluwer Academic Publishers, Dordrecht, 1995.CrossRefzbMATHGoogle Scholar
  33. [33]
    WavES: The software package, Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2016

Authors and Affiliations

  1. 1.Department of Mathematical SciencesChalmers University of Technology and Gothenburg UniversityGöteborgSweden
  2. 2.Department of Signals and SystemsChalmers University of TechnologyGöteborgSweden

Personalised recommendations