Applications of Mathematics

, Volume 59, Issue 1, pp 1–13 | Cite as

Variational characterization of eigenvalues of a non-symmetric eigenvalue problem governing elastoacoustic vibrations

  • Markus StammbergerEmail author
  • Heinrich Voss


Small amplitude vibrations of an elastic structure completely filled by a fluid are considered. Describing the structure by displacements and the fluid by its pressure field one arrives at a non-selfadjoint eigenvalue problem. Taking advantage of a Rayleigh functional we prove that its eigenvalues can be characterized by variational principles of Rayleigh, minmax and maxmin type.


eigenvalue problem fluid-solid vibration variational characterization min-max principle maxmin principle 

MSC 2010

35P05 47A75 65N25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Alonso, A. D. Russo, C. Padra, R. Rodríguez: A posteriori error estimates and a local refinement strategy for a finite element method to solve structural-acoustic vibration problems. Adv. Comput. Math. 15 (2001), 25–59.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [2]
    I. Babuška, J. Osborn: Eigenvalue problems. Handbook of Numerical Analysis. Volume II: Finite Element Methods (Part 1) (P. Ciarlet et al., eds.). North-Holland, Amsterdam, 1991, pp. 641–787.CrossRefGoogle Scholar
  3. [3]
    T. Belytschko: Fluid-structure interaction. Comput. Struct. 12 (1980), 459–469.CrossRefzbMATHGoogle Scholar
  4. [4]
    J. K. Bennighof: Vibroacoustic frequency sweep analysis using automated multi-level substructuring. Proceedings of the AIAA 40th SDM Conference, St. Louis, Missouri, 1999. Department of Aerospace Engineering & Engineering Mechanics, The University of Texas, Austin, 1999.Google Scholar
  5. [5]
    A. Bermúdez, P. Gamallo, M. R. Noguieras, R. Rodríguez: Approximation of a structural acoustic vibration problem by hexahedral finite elements. IMA J. Numer. Anal. 26 (2006), 391–421.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [6]
    A. Bermúdez, R. Rodríguez: Analysis of a finite element method for pressure/potential formulation of elastoacoustic spectral problems. Math. Comput. 71 (2002), 537–552.CrossRefzbMATHGoogle Scholar
  7. [7]
    A. Craggs: The transient response of a coupled plate-acoustic system using plate and acoustic finite elements. Journal of Sound and Vibration 15 (1971), 509–528.CrossRefGoogle Scholar
  8. [8]
    J.-F. Deü, W. Larbi, R. Ohayon: Variational formulation of interior structural-acoustic vibration problem. Computational Aspects of Structural Acoustics and Vibrations (G. Sandberg et al., eds.). CISM International Centre for Mechanical Sciences 505, Springer, Wien, 2009, pp. 1–21.CrossRefGoogle Scholar
  9. [9]
    G. C. Everstine: A symmetric potential formulation for fluid-structure interaction. Journal of Sound and Vibration 79 (1981), 157–160.CrossRefGoogle Scholar
  10. [10]
    H. Morand, R. Ohayon: Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results. Int. J. Numer. Methods Eng. 14 (1979), 741–755.CrossRefzbMATHGoogle Scholar
  11. [11]
    L. G. Olson, K.-J. Bathe: Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential. Comput. Struct. 21 (1985), 21–32.CrossRefzbMATHGoogle Scholar
  12. [12]
    M. Petyt, J. Lea, G. H. Koopmann: A finite element method for determining the acoustic modes of irregular shaped cavities. Journal of Sound and Vibration 45 (1976), 495–502.CrossRefGoogle Scholar
  13. [13]
    R. Rodríguez, J. E. Solomin: The order of convergence of eigenfrequencies in finite element approximations of fluid-structure interaction problems. Math. Comput. 65 (1996), 1463–1475.CrossRefzbMATHGoogle Scholar
  14. [14]
    G. Sandberg, P. Göransson: A symmetric finite element formulation for acoustic fluid-structure interaction analysis. Journal of Sound and Vibration 123 (1988), 507–515.CrossRefGoogle Scholar
  15. [15]
    M. Stammberger: On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures. PhD thesis. Institute of Numerical Simulation, Hamburg University of Technology, Hamburg, 2010.Google Scholar
  16. [16]
    M. Stammberger, H. Voss: Automated multi-level sub-structuring for fluid-solid interaction problems. Numer. Linear Algebra Appl. 18 (2011), 411–427.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [17]
    M. Stammberger, H. Voss: On an unsymmetric eigenvalue problem governing free vibrations of fluid-solid structures. ETNA, Electron. Trans. Numer. Anal. (electronic only) 36 (2009–2010), 113–125.zbMATHMathSciNetGoogle Scholar
  18. [18]
    H. Voss, M. Stammberger: Structural-acoustic vibration problems in the presence of strong coupling. J. Pressure Vessel Technol. 135 (2013), paper 011303.Google Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2014

Authors and Affiliations

  1. 1.Hamburg University of TechnologyHamburgGermany

Personalised recommendations