Advertisement

Applications of Mathematics

, Volume 58, Issue 1, pp 39–61 | Cite as

Periodic solutions for some nonautonomous p(t)-Laplacian Hamiltonian systems

  • Liang Zhang
  • X. H. TangEmail author
Article

Abstract

In this paper, we deal with the existence of periodic solutions of the p(t)-Laplacian Hamiltonian system . Some new existence theorems are obtained by using the least action principle and minimax methods in critical point theory, and our results generalize and improve some existence theorems.

Keywords

periodic solution Hamiltonian system p(t)-Laplacian system critical point minimax principle least action principle 

MSC 2010

34C25 58E50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. S. Berger, M. Schechter: On the solvability of semilinear gradient operator equations. Adv. Math. 25 (1977), 97–132.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    X.-L. Fan, X. Fan: A Knobloch-type result for p(t)-Laplacian systems. J. Math. Anal. Appl. 282 (2003), 453–464.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    X.-L. Fan, D. Zhao: On the spaces L p(x)(Ω) and W m,p(x)(Ω). J. Math. Anal. Appl. 263 (2001), 424–446.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    X.-L. Fan, Q.-H. Zhang: Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl. 52 (2003), 1843–1852.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    G.-H. Fei: On periodic solutions of superquadratic Hamiltonian systems. Electron. J. Differ. Equ., paper No. 8 (2002), 1–12.Google Scholar
  6. [6]
    J.-X. Feng, Z.-Q. Han: Periodic solutions to differential systems with unbounded or periodic nonlinearities. J. Math. Anal. Appl. 323 (2006), 1264–1278.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Q. Jiang, C. L. Tang: Periodic and subharmonic solutions of a class of subquadratic Hamiltonian systems. J. Math. Anal. Appl. 328 (2007), 380–389.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    S.-J. Li, M. Willem: Applications of local linking to critical point theory. J. Math. Anal. Appl. 189 (1995), 6–32.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    J.Q. Liu: A generalized saddle point theorem. J. Differ. Equations 82 (1989), 372–385.zbMATHCrossRefGoogle Scholar
  10. [10]
    S. Ma, Y. Zhang: Existence of infinitely many periodic solutions for ordinary p-Laplacian systems. J. Math. Anal. Appl. 351 (2009), 469–479.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    J. Mawhin: Semi-coercive monotone variational problems. Bull. Cl. Sci., V. Sér., Acad. R. Belg. 73 (1987), 118–130.MathSciNetzbMATHGoogle Scholar
  12. [12]
    J. Mawhin, M. Willem: Critical point theory and Hamiltonian systems. Applied Mathematical Sciences, Vol. 74. Springer, New York, 1989.Google Scholar
  13. [13]
    P.H. Rabinowitz: Periodic solutions of Hamiltonian systems. Comm. Pure Appl. Math. 31 (1978), 157–184.MathSciNetCrossRefGoogle Scholar
  14. [14]
    P.H. Rabinowitz: On subharmonic solutions of Hamiltonian systems. Commun. Pure Appl. Math. 33 (1980), 609–633.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    C.-L. Tang: Periodic solutions of non-autonomous second order systems with -quasisubadditive potential. J. Math. Anal. Appl. 189 (1995), 671–675.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    C.-L. Tang: Periodic solutions of non-autonomous second order systems with sublinear nonlinearity. Proc. Am. Math. Soc. 126 (1998), 3263–3270.zbMATHCrossRefGoogle Scholar
  17. [17]
    C.-L. Tang, X.-P. Wu: Periodic solutions for second order systems with not uniformly coercive potential. J. Math. Anal. Appl. 259 (2001), 386–397.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    C.-L. Tang, X.-P. Wu: Notes on periodic solutions of subquadratic second order systems. J. Math. Anal. Appl. 285 (2003), 8–16.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    C.-L. Tang, X.-P. Wu: A note on periodic solutions of nonautonomous second order systems. Proc. Am. Math. Soc. 132 (2004), 1295–1303.MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    Z.-L. Tao, C.-L. Tang: Periodic and subharmonic solutions of second order Hamiltonian systems. J. Math. Anal. Appl. 293 (2004), 435–445.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    X.-J. Wang, R. Yuan: Existence of periodic solutions for p(t)-Laplacian systems. Nonlinear Anal., Theory Methods Appl. 70 (2009), 866–880.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    M. Willem: Oscillations forcées de syst`ems hamiltoniens. Sémin. Anal. Non Linéaire. Univ. Besancon, 1981.Google Scholar
  23. [23]
    X.-P. Wu: Periodic solutions for nonautonomous second-order systems with bounded nonlinearity. J. Math. Anal. Appl. 230 (1999), 135–141.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    X.-P. Wu, C.-L. Tang: Periodic solutions of a class of non-autonomous second-order systems. J. Math. Anal. Appl. 236 (1999), 227–235.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    B. Xu, C.-L. Tang: Some existence results on periodic solutions of ordinary p-Laplacian systems. J. Math. Anal. Appl. 333 (2007), 1228–1236.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Y.-W. Ye, C.-L. Tang: Periodic solutions for some nonautonomous second order Hamiltonian systems. J. Math. Anal. Appl. 344 (2008), 462–471.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    V.V. Zhikov: Averaging of functionals in the calculus of variations and elasticity theory. Math. USSR, Izv. 29 (1987), 33–66.zbMATHCrossRefGoogle Scholar
  28. [28]
    V.V. Zhikov: On passage to the limit in nonlinear variational problems. Suss. Acad. Sci, Sb., Math. 183 (1992), 47–84.zbMATHGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2013

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of JinanJinan, ShangdongP.R.China
  2. 2.School of Mathematical Sciences and Computing TechnologyCentral South UniversityChangsha, HunanP.R.China

Personalised recommendations