Applications of Mathematics

, Volume 56, Issue 3, pp 265–285 | Cite as

On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities

Article

Abstract

We consider a class of incompressible fluids whose viscosities depend on the pressure and the shear rate. Suitable boundary conditions on the traction at the inflow/outflow part of boundary are given. As an advantage of this, the mean value of the pressure over the domain is no more a free parameter which would have to be prescribed otherwise. We prove the existence and uniqueness of weak solutions (the latter for small data) and discuss particular applications of the results.

Keywords

existence weak solutions incompressible fluids non-Newtonian fluids pressure dependent viscosity shear dependent viscosity inflow/outflow boundary conditions pressure boundary conditions filtration boundary conditions 

MSC 2010

35Q35 35J65 76D03 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Amrouche, V. Girault: Decomposition of vector spaces and application of the Stokes problem in arbitrary dimension. Czechoslovak Math. J. 44 (1994), 109–140.MathSciNetMATHGoogle Scholar
  2. [2]
    J. Bear: Dynamics of Fluids in Porous Media. Elsevier, New York, 1972.MATHGoogle Scholar
  3. [3]
    M.E. Bogovskiĭ: Solution of some problems of vector analysis associated with the operators div and grad. Tr. Semin. S. L. Soboleva 1 (1980), 5–40. (In Russian.)Google Scholar
  4. [4]
    F. Boyer, P. Fabrie: Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete Contin. Dyn. Syst., Ser. B 7 (2007), 219–250 (electronic).MathSciNetMATHGoogle Scholar
  5. [5]
    C.-H. Bruneau: Boundary conditions on artificial frontiers for incompressible and compressible Navier-Stokes equations. M2AN, Math. Model. Numer. Anal. 34 (2000), 303–314.MathSciNetMATHCrossRefGoogle Scholar
  6. [6]
    C.-H. Bruneau, P. Fabrie: Effective downstream boundary conditions for incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 19 (1994), 693–705.MATHCrossRefGoogle Scholar
  7. [7]
    C.-H. Bruneau, P. Fabrie: New efficient boundary conditions for incompressible Navier-Stokes equations: A well-posedness result. RAIRO, Modélisation Math. Anal. Numér. 30 (1996), 815–840.MathSciNetMATHGoogle Scholar
  8. [8]
    M. Buliček, V. Fišerová: Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index. Z. Anal. Anwend. 28 (2009), 349–371.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    M. Buliček, J. Málek, K.R. Rajagopal: Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries. SIAM J. Math. Anal. 41 (2009), 665–707.MathSciNetMATHCrossRefGoogle Scholar
  10. [10]
    M. Buliček, J. Málek, K.R. Rajagopal: Navier’s slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana Univ. Math. J. 56 (2007), 51–85.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    M. Buliček, J. Málek, K.R. Rajagopal: Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling ν(p,·) → + ∞ as p → +∞. Czechoslovak Math. J. 59 (2009), 503–528.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    C. Conca, F. Murat, O. Pironneau: The Stokes and Navier-Stokes equations with boundary conditions involving the pressure. Japan J. Math., New Ser. 20 (1994), 279–318.MathSciNetMATHGoogle Scholar
  13. [13]
    M. Feistauer, T. Neustupa: On non-stationary viscous incompressible flow through a cascade of profiles. Math. Methods Appl. Sci. 29 (2006), 1907–1941.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    J. Filo, A. Zaušková: 2D Navier-Stokes equations in a time dependent domain with Neumann type boundary conditions. J. Math. Fluid Mech. 10 (2008), 1–46.MathSciNetCrossRefGoogle Scholar
  15. [15]
    P. Forchheimer: Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 45 (1901), 1781–1788. (In German.)Google Scholar
  16. [16]
    M. Franta, J. Malek, K.R. Rajagopal: On steady flows of fluids with pressure- and shear-dependent viscosities. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 461 (2005), 651–670.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    J. Hämäläinen, R.A. Mäkinen, P. Tarvainen: Optimal design of paper machine headboxes. Int. J. Numer. Methods Fluids 34 (2000), 685–700.MATHCrossRefGoogle Scholar
  18. [18]
    J. Haslinger, J. Málek, J. Stebel: Shape optimization in problems governed by generalised Navier-Stokes equations: existence analysis. Control Cybern. 34 (2005), 283–303.MATHGoogle Scholar
  19. [19]
    S.M. Hassanizadeh, W.G. Gray: High velocity flow in porous media. Transp. in Porous Media 2 (1987), 521–531.Google Scholar
  20. [20]
    J.G. Heywood, R. Rannacher, S. Turek: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22 (1996), 325–352.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    J. Hron, J. Málek, J. Nečas, K.R. Rajagopal: Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities. Math. Comput. Simul. 61 (2003), 297–315.MATHCrossRefGoogle Scholar
  22. [22]
    J. Hron, J. Málek, K.R. Rajagopal: Simple flows of fluids with pressure-dependent viscosities. Proc. R. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 457 (2001), 1603–1622.MATHCrossRefGoogle Scholar
  23. [23]
    S. Kračmar, J. Neustupa: A weak solvability of a steady variational inequality of the Navier-Stokes type with mixed boundary conditions. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4169–4180.MATHCrossRefGoogle Scholar
  24. [24]
    P. Kučera: Solutions of the stationary Navier-Stokes equations with mixed boundary conditions in bounded domain. In: Analysis, Numerics and Applications of Differential and Integral Equations (M. Bach et al., eds.). Pitman Res. Notes Math. Ser. 379, 1998, pp. 127–131.Google Scholar
  25. [25]
    P. Kučera, Z. Skalák: Local solutions to the Navier-Stokes equations with mixed boundary conditions. Acta Appl. Math. 54 (1998), 275–288.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    M. Lanzendörfer: On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate. Nonlinear Anal., Real World Appl. 10 (2009), 1943–1954.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    J. Málek, J. Nečas, K.R. Rajagopal: Global analysis of the flows of fluids with pressure-dependent viscosities. Arch. Ration. Mech. Anal. 165 (2002), 243–269.MathSciNetMATHCrossRefGoogle Scholar
  28. [28]
    J. Málek, J. Nečas, M. Rokyta, M. Růžička: Weak and Measure-Valued Solutions to Evolutionary PDEs. Appl. Math. Math. Comput., Vol. 13. Chapman & Hall, London, 1996.MATHGoogle Scholar
  29. [29]
    J. Málek, K.R. Rajagopal: Mathematical issues concerning the Navier-Stokes equations and some of its generalizations. In: Evolutionary equations, Vol. II. Handbook Differential Equtions. Elsevier/North Holland, Amsterdam, 2005, pp. 371–459.Google Scholar
  30. [30]
    J. Málek, K.R. Rajagopal: Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities. In: Handbook Math. Fluid Dyn., Vol. IV. Elsevier, Amsterdam, 2006.Google Scholar
  31. [31]
    A. Mikelić: Homogenization theory and applications to filtration through porous media. Filtration in Porous Media and Industrial Application. Lect. Notes Math. Vol. 1734 (A. Fasano, ed.). Springer, Berlin, 2000.Google Scholar
  32. [32]
    A. Novotný, I. Straškraba: Introduction to the Mathematical Theory of Compressible Flow. Oxford Lecture Series in Mathematics and its Applications, Vol. 27. Oxford University Press, Oxford, 2004.Google Scholar
  33. [33]
    A. Quarteroni: Fluid structure interaction for blood flow problems. Lecture Notes on Simulation of Fluid and Structure Interaction. AMS-AMIF Summer School, Prague. European Mathematical Society, Prague, 2001.Google Scholar
  34. [34]
    P. J. Shopov, Y. I. Iordanov: Numerical solution of Stokes equations with pressure and filtration boundary conditions. J. Comput. Phys. 112 (1994), 12–23.MATHCrossRefGoogle Scholar

Copyright information

© Institute of Mathematics of the Academy of Sciences of the Czech Republic, Praha, Czech Republic 2011

Authors and Affiliations

  1. 1.PrahaCzech Republic
  2. 2.Institute of Computer ScienceAcademy of Sciences of the Czech RepublicPraha 8Czech Republic
  3. 3.Institute of MathematicsAcademy of Sciences of the Czech RepublicPraha 1Czech Republic

Personalised recommendations