Applications of Mathematics

, Volume 55, Issue 3, pp 241–264 | Cite as

A note on the existence of positive solutions of one-dimensional p-Laplacian boundary value problems

Article

Abstract

This paper is concerned with the existence of positive solutions of a multipoint boundary value problem for higher-order differential equation with one-dimensional p-Laplacian. Examples are presented to illustrate the main results. The result in this paper generalizes those in existing papers.

Keywords

one-dimension p-Laplacian differential equation nonlocal boundary value problem positive solution fixed-point theorem 

MSC 2010

34B10 34B15 35B10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.P. Agarwal, D. O’Regan, P. J.Y. Wong: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht, 1999.MATHGoogle Scholar
  2. [2]
    C. Bai, J. Fang: Existence of multiple positive solutions for nonlinear m-point boundary value problems. Appl. Math. Comput. 140 (2003), 297–305.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    C. Bai, J. Fang: Existence of multiple positive solutions for nonlinear multi-point boundary value problems. J. Math. Anal. Appl. 281 (2003), 76–85.MATHMathSciNetGoogle Scholar
  4. [4]
    M.A. delPino, M. Elgueta, R. F. Manásevich: A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u′|p−2u′)′ + f(t, u) = 0, u(0) = u(T) = 0, p > 1. J. Differ. Equ. 80 (1989), 1–13.CrossRefGoogle Scholar
  5. [5]
    M.A. delPino, R.F. Manásevich: Multiple solutions for the p-Laplacian under global nonresonance. Proc. Am. Math. Soc. 112 (1991), 131–138.CrossRefGoogle Scholar
  6. [6]
    R.E. Gaines, J. L. Mawhin: Coincidence Degree and Nonlinear Differential Equations. Lecture Notes in Math., Vol. 568. Springer, Berlin, 1977.MATHGoogle Scholar
  7. [7]
    Y. Guo, W. Ge: Three positive solutions for the one dimension p-Laplacian. J. Math. Anal. Appl. 286 (2003), 491–508.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    D. Ji, M. Feng, W. Ge: Multiple positive solutions for multipoint boundary value problems with sign changing nonlinearity. Appl. Math. Comput. 196 (2008), 511–520.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    G. L. Karakostas: Triple positive solutions for the Φ-Laplacian when Φ is a supmultiplicative-like function. Electron. Diff. Equ. 69 (2004), 1–13.Google Scholar
  10. [10]
    G. L. Karakostas: Positive solutions for the Φ-Laplacian when Φ is a sup-multiplicative-like function. Electron. Diff. Equ. 68 (2004), 1–12.Google Scholar
  11. [11]
    N. Kosmatov: Symmetric solutions of a multi-point boundary value problem. J. Math. Anal. Appl. 309 (2005), 25–36.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    K.D. Lan: Multiple positive solutions of semilinear differential equations with singularities. J. Lond. Math. Soc., Ser. II 63 (2001), 690–704.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    W.-C. Lian, F. Wong: Existence of positive solutions for higher-order generalized p-Laplacian BVPs. Appl. Math. Lett. 13 (2000), 35–43.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    R. Liang, J. Peng, J. Shen: Positive solutions to a generalized second order three-point boundary value problem. Appl. Math. Comput. 196 (2008), 931–940.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    B. Liu: Positive solutions of a nonlinear four-point boundary value problems. Appl. Math. Comput. 155 (2004), 179–203.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Y. Liu, W. Ge: Multiple positive solutions to a three-point boundary value problem with p-Laplacian. J. Math. Anal. Appl. 277 (2003), 293–302.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    H. Lü, D. O’Regan, C. Zhong: Multiple positive solutions for the one dimensional singular p-Laplacian. Appl. Math. Comput. 133 (2002), 407–422.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    R. Ma: Existence of positive solutions for superlinear semipositone m-point boundary-value problems. Proc. Edinb. Math. Soc., II. Ser. 46 (2003), 279–292.MATHCrossRefGoogle Scholar
  19. [19]
    R. Ma: Multiple nonnegative solutions of second-order systems of boundary value problems. Nonlinear Anal., Theory Methods Appl. 42 (2000), 1003–1010.CrossRefGoogle Scholar
  20. [20]
    R. Ma: Nodal solutions for a second-order m-point boundary value problem. Czech. Math. J. 56 (2006), 1243–1263.MATHCrossRefGoogle Scholar
  21. [21]
    R. Ma, N. Castaneda: Existence of solutions of nonlinear m-point boundary value problems. J. Math. Anal. Appl. 256 (2001), 556–567.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    R. Ma, B. Thompson: Positive solutions for nonlinear m-point eigenvalue problems. J. Math. Anal. Appl. 297 (2004), 24–37.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Y. Wang, W. Zhao, W. Ge: Multiple positive solutions for boundary value problems of second order delay differential equations with one-dimensional p-Laplacian. J. Math. Anal. Appl. 326 (2007), 641–654.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    J.R. L. Webb: Positive solutions of some three point boundary value problems via fixed point index theory. Nonlinear Anal., Theory Methods Appl. 47 (2001), 4319–4332.MATHCrossRefGoogle Scholar
  25. [25]
    G. Zhang, J. Sun: Positive solutions of m-point boundary value problems. J. Math. Anal. Appl. 291 (2004), 406–418.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Z. Zhang, J. Wang: On existence and multiplicity of positive solutions to singular multi-point boundary value problems. J. Math. Anal. Appl. 295 (2004), 502–512.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2010

Authors and Affiliations

  1. 1.Department of MathematicsGuangdong University of Business StudiesGuangzhouP.R.China

Personalised recommendations