Applications of Mathematics

, Volume 54, Issue 5, pp 381–390

A parametrized newton method for nonsmooth equations with finitely many maximum functions

Article

Abstract

In this paper we propose a parametrized Newton method for nonsmooth equations with finitely many maximum functions. The convergence result of this method is proved and numerical experiments are listed.

Keywords

nonsmooth equations Newton method convergence 

MSC(2000)

65H10 90C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    X. Chen, L. Qi: A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Comput. Optim. Appl. 3 (1994), 157–179.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    F.H. Clarke: Optimization and Nonsmooth Analysis. John Wiley & Sons, New York, 1983.MATHGoogle Scholar
  3. [3]
    Y. Gao: Newton methods for solving two classes of nonsmooth equations. Appl. Math. 46 (2001), 215–229.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    R. Mifflin: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control. Optim. 15 (1997), 959–972.CrossRefMathSciNetGoogle Scholar
  5. [5]
    J. S. Pang, L. Qi: Nonsmooth equations: Motivation and algorithms. SIAM J. Optim. 3 (1993), 443–465.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    F.A. Potra, L. Qi, D. Sun: Secant methods for semismooth equations. Numer. Math. 80 (1998), 305–324.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    L. Qi, J. Sun: A nonsmooth version of Newton’s method. Math. Program. Ser. A 58 (1993), 353–367.CrossRefMathSciNetGoogle Scholar
  8. [8]
    L. Qi: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18 (1993), 227–244.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    M. J. Śmietański: An approximate Newton method for non-smooth equations with finite max functions. Numer. Algorithms 41 (2006), 219–238.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    M. J. Śmietański: On a new class parametrized Newton-like methods for semismooth equations. Appl. Math. Comput. 193 (2007), 430–437.CrossRefMathSciNetGoogle Scholar
  11. [11]
    D. Sun, J. Han: Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM J. Optim. 7 (1997), 463–480.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2009

Authors and Affiliations

  1. 1.School of ManagementUniversity of Shanghai for Science and TechnologyShanghaiP.R. China
  2. 2.College of MathematicsQingdao UniversityQingdaoP.R. China
  3. 3.School of ManagementUniversity of Shanghai for Science and TechnologyShanghaiP.R. China

Personalised recommendations