Advertisement

Applications of Mathematics

, Volume 54, Issue 3, pp 177–180 | Cite as

Ivan Hlaváček is seventy-five

  • Jan H. Brandts
  • Michal Křížek
Article
  • 43 Downloads

Keywords

Galerkin Approximation Nonlinear Elliptic Problem Optimal Shape Design Nonhomogeneous Boundary Condition Mathematical Science Research Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Hlaváček, J. Nečas: On inequalities of Korn’s type. I: Boundary-value problems for elliptic systems of partial differential equations. Arch. Ration. Mech. Anal. 36 (1970), 305–311.zbMATHCrossRefGoogle Scholar
  2. [2]
    I. Hlaváček: Optimization of the shape of axisymmetric shells. Apl. Math. 28 (1983), 269–294.zbMATHGoogle Scholar
  3. [3]
    I. Hlaváček: Shape optimization by means of the penalty method with extrapolation. Appl. Math. 39 (1994), 449–477.zbMATHMathSciNetGoogle Scholar
  4. [4]
    I. Hlaváček, R. Mäkinen: On the numerical solution of axisymmetric domain optimization problems by dual finite element method. Numer. Methods Partial Differ. Equations 10 (1994), 637–650.zbMATHCrossRefGoogle Scholar
  5. [5]
    I. Hlaváček, M. Křížek, J. Malý: On Galerkin approximations of a quasilinear nonpotential elliptic problem of a nonmonotone type. J. Math. Anal. Appl. 184 (1994), 168–189.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    J. Nečas, I. Hlaváček: Mathematical Theory of Elastic and Elasto-Plastic Bodies: An Introduction. Elsevier, Amsterdam-Oxford-New York, 1981; Czech translation: Úvod do matematické teorie pružných a pružně plastických těles. SPN, Praha, 1976; SNTL, Praha, 1983.zbMATHGoogle Scholar
  7. [7]
    I. Hlaváček, J. Haslinger, J. Nečas, J. Lovíšek: Solution of Variational Inequalities in Mechanics. Springer, New York-Berlin, 1988; translation from Slovak publication: Riešenie variačných nerovností v mechanike. Alfa, Bratislava, 1982; Reshenie variacionnych neravenstv v mechanike. Mir, Moscow, 1986.zbMATHGoogle Scholar
  8. [8]
    J. Haslinger, I. Hlaváček, J. Nečas: Numerical Methods for Unilateral Problems in Solid Mechanics. Handbook of Numer. Anal., Vol. IV (P.G. Ciarlet, J.-L. Lions, eds.). North-Holland, Amsterdam, 1996, pp. 313–485.Google Scholar
  9. [9]
    I. Hlaváček, J. Chleboun, I. Babuška: Uncertain Input Data Problems and the Worst Scenario Method. Elsevier, Amsterdam, 2004.zbMATHGoogle Scholar
  10. [10]
    J. Nedoma, J. Stehlík, M. Bartoš, F. Denk, V. Džupa, J. Fousek, I. Hlaváček, Z. Klézl, I. Květ: Biomechanics of the human skeleton and artificial replacements of its parts (Biomechanika lidského skeletu a umělých náhrad jeho částí). Karolinum, Praha, 2006. (In Czech.)Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2009

Authors and Affiliations

  • Jan H. Brandts
  • Michal Křížek

There are no affiliations available

Personalised recommendations