Applications of Mathematics

, 53:469

Extended thermodynamics—a theory of symmetric hyperbolic field equations



Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear differential equations of first order. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields.

The kinetic theory of gases, or the moment theories based on the Boltzmann equation, provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases.

It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation.


thermodynamics symmetric hyperbolicity kinetic theory light scattering 


  1. [1]
    G. Boillat: La propagation des ondes. Gauthier-Villars, Paris, 1965. (In French.)MATHGoogle Scholar
  2. [2]
    G. Boillat, T. Ruggeri: Hyperbolic principal subsystems: Entropy convexity and subcharacteristic conditions. Arch. Ration. Mech. Anal. 137 (1997), 305–320.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. Boillat, T. Ruggeri: Moment equations in the kinetic theory of gases and wave velocities. Contin. Mech. Thermodyn. 9 (1997), 205–212.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    C. Cattaneo: Sulla conduzione del calore. Atti Semin. Mat. Fis. Univ. Modena 3 (1949), 83–101. (In Italian.)MATHMathSciNetGoogle Scholar
  5. [5]
    K. O. Friedrichs, P. Lax: Systems of conservation equations with a convex extension. Proc. Natl. Acad. Sci. USA 68 (1971), 1686–1688.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    S. K. Godunov: An interesting class of quasi-linear systems. Sov. Math. Dokl. 2 (1961), 947–949.MATHGoogle Scholar
  7. [7]
    H. Grad: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2 (1949), 331–407.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    W. A. Green: The growth of plane discontinuities propagating into a homogeneous deformed elastic material. Arch. Ration. Mech. Anal. 16 (1964), 79–88.MATHCrossRefGoogle Scholar
  9. [9]
    S. Kawashima: Large-time behaviour of solutions to hyperbolic-parabolic systems of conservations laws and applications. Proc. R. Soc. Edinb., Sect. A 106 (1987), 169–184.MATHMathSciNetGoogle Scholar
  10. [10]
    I-Shih Liu: Method of Lagrange multipliers for the exploitation of the entropy principle. Arch. Ration. Mech. Anal. 46 (1972), 131–148.MATHGoogle Scholar
  11. [11]
    I-Shih Liu, I. Müller: Extended thermodynamics of classical and degenerate gases. Arch. Ration. Mech. Anal. 83 (1983), 285–332.MATHCrossRefGoogle Scholar
  12. [12]
    I. Müller: On the entropy inequality. Arch. Ration. Mech. Anal. 26 (1967), 118–141.MATHCrossRefGoogle Scholar
  13. [13]
    I. Müller: Zum Paradox der Wärmeleitungstheorie. Zeitschrift für Physik 198 (1967).Google Scholar
  14. [14]
    I. Müller: Zur Ausbreitungsgeschwindigkeit von Störungen in kontinuierlichen Medien. Dissertation. TH Aachen, 1966.Google Scholar
  15. [15]
    I. Müller, T. Ruggeri: Rational Extended Thermodynamics. 2nd ed. Springer Tracts of Natural Philosophy Vol. 37. Springer, New York, 1998.MATHGoogle Scholar
  16. [16]
    I. Müller, W. Weiss, D. Reitebuch: Extended thermodynamics—consistent in order of magnitude. Contin. Mech. Thermodyn. 15 (2003), 113–146.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    T. F. Ruggeri: Galilean invariance and entropy principle for systems of balance laws. Contin. Mech. Thermodyn. 1 (1989), 3–20.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    T. Ruggeri, A. Strumia: Main field and convex covariant density for quasi-linear hyperbolic systems. Relativistic fluid dynamics Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A, Vol. 34. 1981, pp. 65–84.MATHMathSciNetGoogle Scholar
  19. [19]
    W. Weiss: Zur Hierarchie der erweiterten Thermodynamik. Dissertation. TU Berlin, 1990.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2008

Authors and Affiliations

  1. 1.Technische Universität BerlinBerlinGermany

Personalised recommendations