Applications of Mathematics

, Volume 53, Issue 5, pp 405–407 | Cite as

Jürgen Sprekels turns sixty

  • Dietmar Hömberg
  • Pavel Krejčí


Phase Transition Shape Memory Alloy Free Boundary Problem Sixtieth Birthday Hysteresis Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Applied Mathematical Sciences Vol. 121. Springer, New York, 1996.MATHGoogle Scholar
  2. [2]
    M. A. Krasnosel’skii, A. V. Pokrovskii: Systems with Hysteresis. Springer, Berlin, 1989; Russian Edition: Nauka, Moscow, 1983.MATHGoogle Scholar
  3. [3]
    P. Krejčí, J. Sprekels: Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity. Appl. Math. 43 (1998), 173–205.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    P. Krejčí, J. Sprekels: A hysteresis approach to phase-field models. Nonlinear Anal., Theory Methods Appl. 39 (2000), 569–586.CrossRefGoogle Scholar
  5. [5]
    P. Krejčí, J. Sprekels, U. Stefanelli: Phase-field models with hysteresis in one-dimensional thermoviscoplasticity. SIAM J. Math. Anal. 34 (2002), 409–434.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    P. Neittaanmäki, J. Sprekels, D. Tiba: Optimization of Elliptic Systems. Theory and Applications. Springer Monographs in Mathematics. Springer, New York, 2006.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2008

Authors and Affiliations

  • Dietmar Hömberg
  • Pavel Krejčí

There are no affiliations available

Personalised recommendations