Applications of Mathematics

, Volume 51, Issue 1, pp 5–36 | Cite as

From Scalar to Vector Optimization

  • Ivan Ginchev
  • Angelo Guerraggio
  • Matteo Rocca


Initially, second-order necessary optimality conditions and sufficient optimality conditions in terms of Hadamard type derivatives for the unconstrained scalar optimization problem ϕ(x) → min, x ∈ ℝ m , are given. These conditions work with arbitrary functions ϕ: ℝ m → ℝ, but they show inconsistency with the classical derivatives. This is a base to pose the question whether the formulated optimality conditions remain true when the “inconsistent” Hadamard derivatives are replaced with the “consistent” Dini derivatives. It is shown that the answer is affirmative if ϕ is of class \(\mathcal{C}^{1,1}\) (i.e., differentiable with locally Lipschitz derivative).

Further, considering \(\mathcal{C}^{1,1}\) functions, the discussion is raised to unconstrained vector optimization problems. Using the so called “oriented distance” from a point to a set, we generalize to an arbitrary ordering cone some second-order necessary conditions and sufficient conditions given by Liu, Neittaanmaki, Krizek for a polyhedral cone. Furthermore, we show that the conditions obtained are sufficient not only for efficiency but also for strict efficiency.


scalar and vector optimization \(\mathcal{C}^{1,1}\) functions Hadamard and Dini derivatives second-order optimality conditions Lagrange multipliers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. Aghezzaf: Second-order necessary conditions of the Kuhn-Tucker type in multiobjective programming problems. Control Cybern. 28 (1999), 213–224.MATHMathSciNetGoogle Scholar
  2. [2]
    V. M. Alekseev, V. M. Tikhomirov, S. V. Fomin: Optimal Control. Consultants Bureau, New York, 1987 (Russian original: Optimal'noe upravlenie. Publ. Nauka, Moscow, 1979).Google Scholar
  3. [3]
    T. Amahroq, A. Taa: On Lagrange-Kuhn-Tucker multipliers for multiobjective optimization problems. Optimization 41 (1997), 159–172.MathSciNetGoogle Scholar
  4. [4]
    A. Auslender: Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optimization 22 (1984), 239–254.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    E. Bednarczuk, W. Song: PC points and their application to vector optimization. PLISKA, Stud. Math. Bulg. 12 (1998), 21–30.MathSciNetGoogle Scholar
  6. [6]
    S. Bolintineanu, M. El Maghri: Second-order efficiency conditions and sensitivity of efficient points. J. Optimization Theory Appl. 98 (1998), 569–592.Google Scholar
  7. [7]
    M. Ciligot-Travain: On Lagrange-Kuhn-Tucker multipliers for Pareto optimization problems. Numer. Funct. Anal. Optimization 15 (1994), 689–693.MathSciNetGoogle Scholar
  8. [8]
    G. P. Crespi, I. Ginchev, M. Rocca: Minty variational inequality, efficiency and proper efficiency. Vietnam J. Math. 32 (2004), 95–107.MathSciNetGoogle Scholar
  9. [9]
    V. F. Demyanov, A. M. Rubinov: Constructive Nonsmooth Analysis. Peter Lang, Frankfurt am Main, 1995.Google Scholar
  10. [10]
    I. Ginchev:: Higher order optimality conditions in nonsmooth optimization. Optimization 51 (2002), 47–72.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    I. Ginchev, A. Guerraggio, M. Rocca: Equivalence on (n+1)-th order Peano and usual derivatives for n-convex functions. Real Anal. Exch. 25 (2000), 513–520.MathSciNetGoogle Scholar
  12. [12]
    I. Ginchev, A. Guerraggio, M. Rocca: On second-order conditions in vector optimization. Preprint 2002/32, Universita dell'Insubria, Facolta di Economia, Varese 2002, Scholar
  13. [13]
    I. Ginchev, A. Guerraggio, M. Rocca: First-order conditions for C 0,1 constrained vector optimization. In: Variational Analysis and Applications (F. Giannessi, A. Maugeri, eds.). Springer-Verlag, New York, 2005, pp. 427–450.Google Scholar
  14. [14]
    I. Ginchev, A. Hoffmann: Approximation of set-valued functions by single-valued one. Discuss. Math., Differ. Incl., Control Optim. 22 (2002), 33–66.MathSciNetGoogle Scholar
  15. [15]
    A. Guerraggio, D. T. Luc: Optimality conditions for C 1,1 vector optimization problems. J. Optimization Theory Appl. 109 (2001), 615–629.CrossRefMathSciNetGoogle Scholar
  16. [16]
    J.-B. Hiriart-Urruty, J.-J. Strodiot, V. Hien Nguen: Generalized Hessian matrix and second order optimality conditions for problems with C 1,1 data. Appl. Math. Optimization 11 (1984), 43–56.Google Scholar
  17. [17]
    J.-B. Hiriart-Urruty: New concepts in nondifferentiable programming. Analyse non convexe, Bull. Soc. Math. France 60 (1979), 57–85.MATHMathSciNetGoogle Scholar
  18. [18]
    J.-B. Hiriart-Urruty: Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4 (1979), 79–97.MATHMathSciNetGoogle Scholar
  19. [19]
    D. Klatte, K. Tammer: On second order sufficient optimality conditions for C 1,1-optimization problems. Optimization 19 (1988), 169–179.MathSciNetGoogle Scholar
  20. [20]
    L. Liu: The second-order conditions of nondominated solutions for C 1,1 generalized multiobjective mathematical programming. Syst. Sci. Math. Sci. 4 (1991), 128–138.MATHGoogle Scholar
  21. [21]
    L. Liu, M. Krizek: The second order optimality conditions for nonlinear mathematical programming with C 1,1 data. Appl. Math. 42 (1997), 311–320.CrossRefMathSciNetGoogle Scholar
  22. [22]
    L. Liu, P. Neittaanmaki, M. Krizek: Second-order optimality conditions for nondominated solutions of multiobjective programming with C 1,1 data. Appl. Math. 45 (2000), 381–397.CrossRefMathSciNetGoogle Scholar
  23. [23]
    D. T. Luc: Theory of Vector Optimization. Springer Verlag, Berlin, 1988.Google Scholar
  24. [24]
    D. T. Luc: Taylor's formula for C k,1 functions. SIAM J. Optim. 5 (1995), 659–669.CrossRefMATHMathSciNetGoogle Scholar
  25. [25]
    E. Miglierina: Characterization of solutions of multiobjective optimization problems. Rendiconti Circ. Mat. Palermo 50 (2001), 153–164.MATHMathSciNetGoogle Scholar
  26. [26]
    E. Miglierina, E. Molho: Scalarization and stability in vector optimization. J. Optimization Theory Appl. 114 (2002), 657–670.CrossRefMathSciNetGoogle Scholar
  27. [27]
    G. Peano: Sulla formola di Taylor. Atti Accad. Sci. Torino 27 (1891), 40–46.MATHGoogle Scholar
  28. [28]
    R. T. Rockafellar: Convex Analysis. Princeton University Press, Princeton, 1970.Google Scholar
  29. [29]
    X. Yang: Second-order conditions in C 1,1 optimization with applications. Numer. Funct. Anal. Optimization 14 (1993), 621–632.MATHGoogle Scholar
  30. [30]
    X. Q. Yang: Generalized second-order derivatives and optimality conditions. Nonlinear Anal. 23 (1994), 767–784.CrossRefMATHMathSciNetGoogle Scholar
  31. [31]
    X. Q. Yang, V. Jeyakumar: Generalized second-order directional derivatives and optimization with C 1,1 functions. Optimization 26 (1992), 165–185.MathSciNetGoogle Scholar
  32. [32]
    A. Zaffaroni: Degrees of efficiency and degrees of minimality. SIAM J. Control Optimization 42 (2003), 1071–1086.CrossRefMATHMathSciNetGoogle Scholar
  33. [33]
    C. Zalinescu: On two notions of proper efficiency. In: Optimization in Mathematical Physics, Pap. 11th Conf. Methods Techniques Math. Phys., Oberwolfach (Brokowski and Martensen, eds.). Peter Lang, Frankfurt am Main, 1987.Google Scholar

Copyright information

© Mathematical Institute, Academy of Sciences of Czech Republic 2006

Authors and Affiliations

  • Ivan Ginchev
    • 1
  • Angelo Guerraggio
    • 2
  • Matteo Rocca
    • 3
  1. 1.Department of MathematicsTechnical University of VarnaVarnaBulgaria
  2. 2.Department of EconomicsUniversity of InsubriaVareseItaly
  3. 3.Department of EconomicsUniversity of InsubriaVareseItaly

Personalised recommendations