Applied Intelligence

, Volume 47, Issue 3, pp 809–827 | Cite as

A hybrid framework for mining high-utility itemsets in a sparse transaction database

Article
  • 160 Downloads

Abstract

High-utility itemset mining aims to find the set of items with utility no less than a user-defined threshold in a transaction database. High-utility itemset mining is an emerging research area in the field of data mining and has important applications in inventory management, query recommendation, systems operation research, bio-medical analysis, etc. Currently, known algorithms for this problem can be classified as either 1-phase or 2-phase algorithms. The 2-phase algorithms typically consist of tree-based algorithms which generate candidate high-utility itemsets and verify them later. A tree data structure generates candidate high-utility itemsets quickly by storing some upper bound utility estimate at each node. The 1-phase algorithms typically consist of inverted-list based and transaction projection based algorithms which avoid the generation of candidate high-utility itemsets. The inverted list and transaction projection allows computation of exact utility estimates. We propose a novel hybrid framework that combines a tree-based and an inverted-list based algorithm to efficiently mine high-utility itemsets. Algorithms based on the framework can harness benefits of both types of algorithms. We report experiment results on real and synthetic datasets to demonstrate the effectiveness of our framework.

Keywords

Data mining Mining methods and algorithms Pattern growth mining Frequent pattern mining Utility mining 

References

  1. 1.
    Agrawal R, Srikant R et al (1994) Fast algorithms for mining association rules Proceeding 20th international conference on very large data bases, VLDB, vol 1215, pp 487–499Google Scholar
  2. 2.
    Ahmed C F, Tanbeer S K, Jeong B S, Lee Y K (2009) Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans Knowl Data Eng 21(12):1708–1721. doi:10.1109/TKDE.2009.46 CrossRefGoogle Scholar
  3. 3.
    Ahmed C F, Tanbeer S K, Jeong B S, Lee Y K (2011) Huc-prune: an efficient candidate pruning technique tomine high utility patterns. Appl Intell 34(2):181–198. doi:10.1007/s10489-009-0188-5 CrossRefGoogle Scholar
  4. 4.
    Ahmed CF, Tanbeer SK, Jeong BS, Choi HJ (2012) Interactive mining of high utility patterns over data streams. Expert Syst Appl 39(15):11,979–11,991. doi:10.1016/j.eswa.2012.03.062. http://www.sciencedirect.com/science/article/pii/S0957417412005854 CrossRefGoogle Scholar
  5. 5.
    Bansal R, Dawar S, Goyal V (2015) An efficient algorithm for mining high-utility itemsets with discount notion. Springer International Publishing, Cham, pp 84–98. doi:10.1007/978-3-319-27057-9_6 Google Scholar
  6. 6.
    Chan R, Yang Q, Shen YD (2003) Mining high utility itemsets Third IEEE international conference on data mining, 2003. ICDM 2003. doi:10.1109/ICDM.2003.1250893, pp 19–26Google Scholar
  7. 7.
    Dawar S, Goyal V (2014) Up-hist tree: an efficient data structure for mining high utility patterns from transaction databases Proceedings of the 19th international database engineering & applications symposium, ACM, New York, NY, USA, IDEAS ’15. doi:10.1145/2790755.2790771, pp 56–61CrossRefGoogle Scholar
  8. 8.
    Erwin A, Gopalan RP, Achuthan NR (2008) Efficient mining of high utility itemsets from large datasets. Springer, Berlin, pp 554–561. doi:10.1007/978-3-540-68125-0_50 Google Scholar
  9. 9.
    Fournier-Viger P, Gomariz A, Gueniche T, Soltani A, Wu C W, Tseng V S (2014) Spmf: a java open-source pattern mining library. J Mach Learn Res 15(1):3389–3393MATHGoogle Scholar
  10. 10.
    Fournier-Viger P, Wu CW, Zida S, Tseng VS (2014) FHM: Faster High-utility itemset mining using estimated utility co-occurrence pruning. Springer International Publishing, Cham, pp 83–92. doi:10.1007/978-3-319-08326-1_9 Google Scholar
  11. 11.
    Goethals B, Zaki M (2003) The frequent itemset mining implementations repository. http://fimi.ua.ac.be/
  12. 12.
    Goyal V, Dawar S, Sureka A (2015) High utility rare itemset mining over transaction databases. Springer International Publishing, Cham, pp 27–40. doi:10.1007/978-3-319-16313-0_3 Google Scholar
  13. 13.
    Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation Proceedings of the 2000 ACM SIGMOD international conference on management of data, ACM, New York, NY, USA, SIGMOD ’00. doi:10.1145/342009.335372, pp 1–12Google Scholar
  14. 14.
    Lan G C, Hong T P, Tseng V S (2014) An efficient projection-based indexing approach for mining high utility itemsets. Knowl Inf Syst 38(1):85–107. doi:10.1007/s10115-012-0492-y CrossRefGoogle Scholar
  15. 15.
    Leung C K S, Khan Q I, Li Z, Hoque T (2007) Cantree: a canonical-order tree for incremental frequent-pattern mining. Knowl Inf Syst 11(3):287–311. doi:10.1007/s10115-006-0032-8 CrossRefGoogle Scholar
  16. 16.
    Li HF, Huang HY, Chen YC, Liu YJ, Lee SY (2008) Fast and memory efficient mining of high utility itemsets in data streams 2008 8th IEEE international conference on data mining. doi:10.1109/ICDM.2008.107, pp 881–886CrossRefGoogle Scholar
  17. 17.
    Li YC, Yeh JS, Chang CC (2008) Isolated items discarding strategy for discovering high utility itemsets. Data & Knowledge Engineering 64(1):198–217. doi:10.1016/j.datak.2007.06.009. http://www.sciencedirect.com/science/article/pii/S0169023X07001218 CrossRefGoogle Scholar
  18. 18.
    Li YC, Yeh JS, Chang CC (2008) Isolated items discarding strategy for discovering high utility itemsets. Data Knowl Eng 64(1):198–217. doi:10.1016/j.datak.2007.06.009. http://www.sciencedirect.com/science/article/pii/S0169023X07001218 CrossRefGoogle Scholar
  19. 19.
    Liu M, Qu J (2012) Mining high utility itemsets without candidate generation Proceedings of the 21st ACM international conference on information and knowledge management, ACM, New York, NY, USA, CIKM ’12. doi:10.1145/2396761.2396773, pp 55–64Google Scholar
  20. 20.
    Liu Y, Liao Wk, Choudhary A (2005) A fast high utility itemsets mining algorithm Proceedings of the 1st international workshop on utility-based data mining, ACM, New York, NY, USA, UBDM ’05. doi:10.1145/1089827.1089839, pp 90–99CrossRefGoogle Scholar
  21. 21.
    Liu Y, Liao Wk, Choudhary A (2005) A two-phase algorithm for fast discovery of high utility itemsets. Springer, Berlin, pp 689–695. doi:10.1007/11430919_79 Google Scholar
  22. 22.
    Park JS, Chen MS, Yu PS (1995) An effective hash-based algorithm for mining association rules Proceedings of the 1995 ACM SIGMOD international conference on management of data, ACM, New York, NY, USA, SIGMOD ’95. doi:10.1145/223784.223813, pp 175–186CrossRefGoogle Scholar
  23. 23.
    Pisharath J, Liu Y, Wk Liao, Choudhary A, Memik G, Parhi J (2005) Nu-minebench 2.0. Department of Electrical and Computer Engineering, Northwestern University, Tech RepGoogle Scholar
  24. 24.
    Rathore S, Dawar S, Goyal V, Patel D (2016) Top-k high utility episode mining from a complex event sequence 21St international conference on management of data, COMAD 2016, Pune, India, March 11–13, 2016. http://comad.in/comad2016/proceedings/paper_19.pdf, pp 56–63Google Scholar
  25. 25.
    Shie BE, Tseng VS, Yu PS (2010) Online mining of temporal maximal utility itemsets from data streams Proceedings of the 2010 ACM symposium on applied computing, ACM, New York, NY, USA, SAC ’10. doi:10.1145/1774088.1774436, pp 1622–1626CrossRefGoogle Scholar
  26. 26.
    Shie BE, Hsiao HF, Tseng VS, Yu PS (2011) Mining high utility mobile sequential patterns in mobile commerce environments. Springer, Berlin, pp 224–238. doi:10.1007/978-3-642-20149-3_18 Google Scholar
  27. 27.
    Shie BE, Yu PS, Tseng VS (2012) Efficient algorithms for mining maximal high utility itemsets from data streams with different models. Expert Syst Appl 39(17):12,947–12,960. doi:10.1016/j.eswa.2012.05.035. http://www.sciencedirect.com/science/article/pii/S095741741200749X CrossRefGoogle Scholar
  28. 28.
    Tseng VS, Wu CW, Shie BE, Yu PS (2010) Up-growth: an efficient algorithm for high utility itemset mining Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD ’10. doi:10.1145/1835804.1835839, pp 253–262Google Scholar
  29. 29.
    Tseng V S, Shie B E, Wu C W, Yu P S (2013) Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans Knowl Data Eng 25(8):1772–1786. doi:10.1109/TKDE.2012.59 CrossRefGoogle Scholar
  30. 30.
    Vu L, Alaghband G (2011) A fast algorithm combining fp-tree and tid-list for frequent pattern mining Proceedings of information and knowledge engineering, pp 472–477Google Scholar
  31. 31.
    Wu CW, Lin YF, Yu PS, Tseng VS (2013) Mining high utility episodes in complex event sequences Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD ’13. doi:10.1145/2487575.2487654, pp 536–544CrossRefGoogle Scholar
  32. 32.
    Yin J, Zheng Z, Cao L (2012) Uspan: an efficient algorithm for mining high utility sequential patterns Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, ACM, New York, NY, USA, KDD ’12. doi:10.1145/2339530.2339636, pp 660–668CrossRefGoogle Scholar
  33. 33.
    Yin J, Zheng Z, Cao L, Song Y, Wei W (2013) Efficiently mining top-k high utility sequential patterns 2013 IEEE 13th international conference on data mining. doi:10.1109/ICDM.2013.148, pp 1259–1264CrossRefGoogle Scholar
  34. 34.
    Yun U, Ryang H, Ryu KH (2014) High utility itemset mining with techniques for reducing overestimated utilities and pruning candidates. Expert Syst Appl 41(8):3861–3878. doi:10.1016/j.eswa.2013.11.038. http://www.sciencedirect.com/science/article/pii/S0957417413009585 CrossRefGoogle Scholar
  35. 35.
    Zaki M J, Parthasarathy S, Ogihara M, Li W, et al. (1997) New algorithms for fast discovery of association rules KDD, vol 97, pp 283–286Google Scholar
  36. 36.
    Zida S, Fournier-Viger P, Lin JCW, Wu CW, Tseng VS (2015) EFIM: A highly efficient algorithm for high-utility itemset mining. Springer International Publishing, Cham, pp 530–546. doi:10.1007/978-3-319-27060-9_44 Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceIndraprastha Institute of Information TechnologyDelhiIndia

Personalised recommendations