Advertisement

Applied Intelligence

, Volume 46, Issue 3, pp 739–755 | Cite as

A novel immune dominance selection multi-objective optimization algorithm for solving multi-objective optimization problems

  • Jin-ke Xiao
  • Wei-min Li
  • Xin-rong Xiao
  • Cheng-zhong LV
Article

Abstract

In this paper, we propose a novel immune dominance selection multi-objective optimization algorithm (IDSMOA) to solve multi-objective numerical and engineering optimization problems in the real world. IDSMOA was inspired by the mechanism that controls how B cells and T cells differentiate, recombine, and mutate self-adjustably to produce new lymphocytes matching antigens with high affinity, then how lymphocytes cooperatively eliminate antigens. The main idea of IDSMOA is to promote 2 populations, population B and population T, to coevolve through an immune selection operator, immune clone operator, immune gen operator, and memory selection operator to produce satisfying Pareto front. Therefore, several operators enable IDSMOA to exploit and excavate the search space, and decrease the number of dominance resistant solutions (DRSs). We compared IDSMOA performance with 3 known multi-objective optimization algorithms and IDSMOA without the combination operator in simulation experiments optimizing 12 benchmark functions. Our simulations indicated that IDSMOA is a competitive optimization tool for multi-objective optimization problems.

Keywords

Immune dominance Multi-objective optimization ε dominance Pareto front 

Notes

Acknowledgments

This study was co-supported by the National Natural Science Foundation of China (Nos. 61473309 and 61472443). And we thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

References

  1. 1.
    Hernández C, Naranjani Y, Sardahi Y, Liang W, Schütze O, Sun J-Q (2013) Simple cell mapping method for multi-objective optimal feedback control design. Int J Dynam Control 1:231–238. doi: 10.1007/s40435-013-0021-1 CrossRefGoogle Scholar
  2. 2.
    Hiremath N C, Sahu S, Tiwari M K (2013) Multi-objective outbound logistics network design for a manufacturing supply chain. J Intell Manuf 24:1071–1084. doi: 10.1007/s10845-012-0635-8 CrossRefGoogle Scholar
  3. 3.
    Karthikeyan S, Asokan P, Nickolas S (2014) A hybrid discrete firefly algorithm for multi-objective flexible job shop scheduling problem with limited resource constraints. Int J Adv Manuf Technol 72:1567–1579. doi: 10.1007/s00170-014-5753-3 CrossRefGoogle Scholar
  4. 4.
    Shi Y, Li R, Zhang Y, Peng X (2015) An immunity-based time series prediction approach and its application for network security situation. Intel Serv Robotics 8:1–22. doi: 10.1007/s11370-014-0160-z CrossRefGoogle Scholar
  5. 5.
    Zavala G R, Nebro A J, Luna F, Coello Coello C A (2014) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidisc Optim 49:537–558. doi: 10.1007/s00158-013-0996-4 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zandieh M, Karimi N (2011) An adaptive multi-population genetic algorithm to solve the multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent setup times. J Intell Manuf 22:979–989. doi: 10.1007/s10845-009-0374-7 CrossRefGoogle Scholar
  7. 7.
    Wang L, Zhou G, Xu Y, Liu M (2012) An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible job-shop scheduling. Int J Adv Manuf Technol 60:1111–1123. doi: 10.1007/s00170-011-3665-z CrossRefGoogle Scholar
  8. 8.
    Padhye N, Branke J, Mostaghim S (2009) Empirical comparison of mopso methods-guide selection and diversity preservation. In: IEEE Congress on Evolutionary Computation, IEEE 2009Google Scholar
  9. 9.
    Ganguly S, Sahoo N C, Das D (2010) A novel multi-objective PSO for electrical distribution system planning incorporating distributed generation. Energy Syst 1:291–337. doi: 10.1007/s12667-010-0014-5 CrossRefGoogle Scholar
  10. 10.
    Tavakkoli-Moghaddam R, Rahimi-Vahed A R, Mirzaei A H (2008) Solving a multi-objective no-wait flow shop scheduling problem with an immune algorithm. Int J Adv Manuf Technol 36:969–981. doi: 10.1007/s00170-006-0906-7 CrossRefGoogle Scholar
  11. 11.
    Qu G-d, Lou Z-h (2013) Application of particle swarm algorithm in the optimal allocation of regional water resources based on immune evolutionary algorithm. J Shanghai Jiaotong Univ (Sci) 18 (5):634–640. doi: 10.1007/s12204-013-1442-x CrossRefGoogle Scholar
  12. 12.
    Liu F, Zhu S-f, Chai Z-y, Qi Y-t, Wu J-s (2013) Immune optimization algorithm for solving vertical handoff decision problem in heterogeneous wireless network. Wireless Netw 19:507–516. doi: 10.1007/s11276-012-0481-9 CrossRefGoogle Scholar
  13. 13.
    Sepulveda M J, Chau W J, Gogniat G, Strum M (2012) A multi-objective adaptive immune algorithm for multi-application NoC mapping. Analog Integr Circ Sig Process 73:851–860. doi: 10.1007/s10470-012-9869-9 CrossRefGoogle Scholar
  14. 14.
    Zitzler E, Laumanns M, Bleuler S (2004) A tutorial on multiobjective optimization. In: Workshop on Multiple Objective (MOMH 2002). Springer-Verlag. Evolutionary MetaheuristicsGoogle Scholar
  15. 15.
    Aguirre H, Tanaka K (2009) Adaptive ε-Ranking on many-objective problems. Evol Intel 2:183–206. doi: 10.1007/s12065-009-0031-2 CrossRefGoogle Scholar
  16. 16.
    Zheng X Y, Li R (2014) Lagrange multiplier rules for weak approximate pareto solutions of constrained vector optimization problems in hilbert spaces. J Optim Theory Appl 162:665–679. doi: 10.1007/s10957-012-0259-3 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Durea M, Dutta J, Tammer C (2010) Lagrange multipliers for ε-Pareto solutions in vector optimization with nonsolid cones in banach spaces. J Optim Theory Appl 145:196–211. doi: 10.1007/s10957-009-9609-1 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Sørensen S N, Stolpe M (2015) Global blending optimization of laminated composites with discrete material candidate selection and thickness variation. Struct Multidisc Optim 52:137–155. doi: 10.1007/s00158-015-1225-0 MathSciNetCrossRefGoogle Scholar
  19. 19.
    Mehmani A, Chowdhury S, Messac A (2015) Predictive quantification of surrogate model fidelity based on modal variations with sample density. Struct Multidisc Optim 52:353–373. doi: 10.1007/s00158-015-1234-z CrossRefGoogle Scholar
  20. 20.
    Shiga M, Tangkaratt V, Sugiyama M (2015) Direct conditional probability density estimation with sparse feature selection. Mach Learn 100:161–182. doi: 10.1007/s10994-014-5472-x MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sepu’lveda M J, Gogniat W J C G, Strum M (2012) A multi-objective adaptive immune algorithm for multi-application NoC mapping. Analog Integr Circ Sig Process 73:851–860. doi: 10.1007/s10470-012-9869-9 CrossRefGoogle Scholar
  22. 22.
    Chen J, Lin Q, Ji Z (2011) Chaos-based multi-objective immune algorithm with a fine-grained selection mechanism. Soft Comput 15:1273–1288. doi: 10.1007/s00500-010-0661-4 CrossRefGoogle Scholar
  23. 23.
    Luo J, Chen C, Xie J (2015) Multi-objective immune algorithm with preference-based selection for reservoir flood control operation. Water Resour Manage 29:1447–1466. doi: 10.1007/s11269-014-0886-6 CrossRefGoogle Scholar
  24. 24.
    Coelho G P, da Silva A E A, Von Zuben F J (2010) An immune-inspired multi-objective approach to the reconstruction of phylogenetic trees. Neural Comput Applic 19:1103–1132. doi: 10.1007/s00521-010-0389-1 CrossRefGoogle Scholar
  25. 25.
    Chen J, Ding Y, Jin Y, Hao K (2013) A synergetic immune clonal selection algorithm based multi-objective optimization method for carbon fiber drawing process. Fibers Polym 14(10):1722–1730CrossRefGoogle Scholar
  26. 26.
    Deb K, Padhye N (2014) Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms. Comput Optim Appl 57.3:761–794MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gong M, Liu C, Jiao L, Cheng G (2010) Hybrid immune algorithm with Lamarckian local search for multi-objective optimization. Memetic Comp 2:47–67. doi: 10.1007/s12293-009-0028-5 CrossRefGoogle Scholar
  28. 28.
    Padhye N, Bhardawaj P, Deb K (2013) Improving differential evolution through a unified approach. J Glob Optim 55.4:771–799MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yang P, Zeng K, Li C, Yang J, Wang S (2015) An improved hybrid immune algorithm for mechanism kinematic chain isomorphism identification in intelligent design. Soft Comput 19:217–223. doi: 10.1007/s00500-014-1244-6 CrossRefGoogle Scholar
  30. 30.
    Wu W-J, Lin S-W, Moon W K An artificial immune system-based support vector machine approach for classifying ultrasound breast tumor images. J Digit Imaging. doi: 10.1007/s10278-014-9757-1
  31. 31.
    Yıldız A R, Öztürk N, Kaya N, Öztürk F (2007) Hybrid multi-objective shape design optimization using Taguchi’s method and genetic algorithm. Struct Multidisc Optim 34:317–332. doi: 10.1007/s00158-006-0079-x CrossRefGoogle Scholar
  32. 32.
    Gong M, Jiao L, Ma W, Shang R (2009) Hybrid immune algorithm with intelligent recombination. In: IEEE Congress on Evolutionary Computation (CEC 2009), pp 1807–1814Google Scholar
  33. 33.
    Ma J, Lei Y, Wang Z, Jiao L, Liu R (2014) A memetic algorithm based on immune multiobjective optimization for flexible job-shop scheduling problemsGoogle Scholar
  34. 34.
    Kukkonen S, Lampinen J (2007) Ranking-dominance and many-objective optimization. In: IEEE congress on evolutionary computation, 2007. CEC 2007, pp 3983–3990Google Scholar
  35. 35.
    Koppen M, Yoshida K (2007) Substitute distance assignments in NSGA-II for handling many-objective optimization problems. In: Evolutionary multi-criterion optimization, pp 727–741Google Scholar
  36. 36.
    Hughes E J (2005) Evolutionary many-objective optimisation: many once or one many in evolutionary computation, 2005. In: The 2005 IEEE Congress on, pp 222–227Google Scholar
  37. 37.
    Hughes EJ (2008) Fitness assignment methods for many-objective problems. In: Multi-objective problem solving from nature, pp 307–329Google Scholar
  38. 38.
    Rubio-Largo Á, Zhang Q, Vega-Rodríguez M A (2015) Multi-objective evolutionary algorithm based on decomposition for 3-objective optimization problems with objectives in different scales. Soft Comput 19:157–166. doi: 10.1007/s00500-014-1239-3 CrossRefGoogle Scholar
  39. 39.
    Saif U, Guan Z, Liu W, Wang B, Zhang C (2014) Multi-objective artificial bee colony algorithm for simultaneous sequencing and balancing of mixed model assembly line. Int J Adv Manuf Technol 18091827:75. doi: 10.1007/s00170-014-6153-4 Google Scholar
  40. 40.
    Zhang Z, Wang L, Long F (2015) Immune optimization approach solving multi-objective chance-constrained programming. Evol Syst 6:4153. doi: 10.1007/s12530-013-9101-x CrossRefGoogle Scholar
  41. 41.
    Louis S J (1993) Syntactic analysis of convergence in genetic algorithms//foundation of genetic algorithms(2nd edition). Morgan Kaufmann Publishers, San Francisco, pp 141–151Google Scholar
  42. 42.
    David W C, Joshua D K (2007) Techniques for highly multi-objective optimisation: some nondominated points are better than others. In: Proceedings of the 9th annual conference on genetic and evolutionary computation. ACM, London, EnglandGoogle Scholar
  43. 43.
    Ikeda K, Kita H, Kobayashi S (2001) Failure of Pareto-based MOEAs: non-dominated really mean near to optimal in evolutionary computation. Proceedings of the 2001 Congress on 2:957– 962CrossRefGoogle Scholar
  44. 44.
    Zhong Y-B, Xiang Y, Liu H-L (2014) A multi-objective artificial bee colony algorithm based on division of the searching space. Appl Intell 41:987–1011. doi: 10.1007/s10489-014-0555-8 CrossRefGoogle Scholar
  45. 45.
    Cheshmehgaz H R, Desa M I, Wibowo A (2013) Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl Intell 38:331–356. doi: 10.1007/s10489-012-0375-7 CrossRefGoogle Scholar
  46. 46.
    Coello Coello C A (2005) Recent trends in evolutionary multi-objective optimization. In: Abaham A, Jain L C, Goldberg R (eds) Evolutionary multi-objective optimization: theoretical advances and applications. Springer, Berlin, pp 7–32Google Scholar
  47. 47.
    Xiao J -k, Li W -m, Li W, Xiao X -r (2015) Optimization on black box function optimization problem. Math Probl Eng 2015(647234):10. doi: 10.1155/2015/647234 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jin-ke Xiao
    • 1
  • Wei-min Li
    • 1
  • Xin-rong Xiao
    • 2
  • Cheng-zhong LV
    • 1
  1. 1.Air Force Engineering UniversityXi’anChina
  2. 2.South China University of TechnologyGuangzhouChina

Personalised recommendations