Applied Intelligence

, Volume 46, Issue 1, pp 79–95 | Cite as

Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems

  • Seyedali Mirjalili
  • Pradeep Jangir
  • Shahrzad Saremi
Article

Abstract

This paper proposes a multi-objective version of the recently proposed Ant Lion Optimizer (ALO) called Multi-Objective Ant Lion Optimizer (MOALO). A repository is first employed to store non-dominated Pareto optimal solutions obtained so far. Solutions are then chosen from this repository using a roulette wheel mechanism based on the coverage of solutions as antlions to guide ants towards promising regions of multi-objective search spaces. To prove the effectiveness of the algorithm proposed, a set of standard unconstrained and constrained test functions is employed. Also, the algorithm is applied to a variety of multi-objective engineering design problems: cantilever beam design, brushless dc wheel motor design, disk brake design, 4-bar truss design, safety isolating transformer design, speed reduced design, and welded beam deign. The results are verified by comparing MOALO against NSGA-II and MOPSO. The results of the proposed algorithm on the test functions show that this algorithm benefits from high convergence and coverage. The results of the algorithm on the engineering design problems demonstrate its applicability is solving challenging real-world problems as well.

Keywords

Ant lion optimizer Multi-objective optimization Optimization Evolutionary algorithm Multi-criterion optimization Heuristic Algorithm Meta-heuristic Engineering optimization 

References

  1. 1.
    Kelley CT (1999) Detection and remediation of stagnation in the Nelder–Mead algorithm using a sufficient decrease condition. SIAM J Optim 10:43–55MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Vogl TP, Mangis J, Rigler A, Zink W, Alkon D (1988) Accelerating the convergence of the back-propagation method. Biol Cybern 59:257–263CrossRefGoogle Scholar
  3. 3.
    Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidiscip Optim 26:369–395MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beyer H.-G., Sendhoff B (2007) Robust optimization–a comprehensive survey. Comput Methods Appl Mech Eng 196:3190–3218MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Knowles JD, Watson RA, Corne DW (2001) Reducing local optima in single-objective problems by multi-objectivization. In: Evolutionary multi-criterion optimization, pp 269–283Google Scholar
  7. 7.
    Deb K, Goldberg DE (1993) Analyzing deception in trap functions. Found Genet Algoritm 2:93–108CrossRefGoogle Scholar
  8. 8.
    Deb K (2001) Multi-objective optimization using evolutionary algorithms, vol 16. WileyGoogle Scholar
  9. 9.
    Coello CAC, Lamont GB, Van Veldhuisen DA (2007) Evolutionary algorithms for solving multi-objective problems. SpringerGoogle Scholar
  10. 10.
    Branke J, Deb K, Dierolf H, Osswald M (2004) Finding knees in multi-objective optimization. In: Parallel problem solving from nature-PPSN VIII, pp 722–731Google Scholar
  11. 11.
    Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8:631–657MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Kim IY, De Weck O (2005) Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct Multidiscip Optim 29:149–158CrossRefGoogle Scholar
  13. 13.
    Messac A, Mattson CA (2002) Generating well-distributed sets of Pareto points for engineering design using physical programming. Optim Eng 3:431–450CrossRefMATHGoogle Scholar
  14. 14.
    Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Parallel problem solving from nature PPSN VI, pp 849–858Google Scholar
  15. 15.
    Deb K, Goel T (2001) Controlled elitist non-dominated sorting genetic algorithms for better convergence. In: Evolutionary multi-criterion optimization, pp 67–81Google Scholar
  16. 16.
    Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197CrossRefGoogle Scholar
  17. 17.
    Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 congress on evolutionary computation, 2002. CEC’02, pp 1051–1056Google Scholar
  18. 18.
    Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279CrossRefGoogle Scholar
  19. 19.
    Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52CrossRefGoogle Scholar
  20. 20.
    Yang X-S (2011) Bat algorithm for multi-objective optimisation. Int J Bio-Inspired Comput 3:267–274CrossRefGoogle Scholar
  21. 21.
    Mirjalili S, Saremi S, Mirjalili SM, Coelho L. d. S. (2016) Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization. Expert Syst Appl 47:106–119CrossRefGoogle Scholar
  22. 22.
    Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82CrossRefGoogle Scholar
  23. 23.
    Ngatchou P, Zarei A, El-Sharkawi M (2005) Pareto multi objective optimization. In: Proceedings of the 13th international conference on intelligent systems application to power systems, 2005, pp 84–91Google Scholar
  24. 24.
    Pareto V (1964) Cours d’economie politique: Librairie DrozGoogle Scholar
  25. 25.
    Edgeworth FY (1881) Mathematical physics. P. Keagan, LondonGoogle Scholar
  26. 26.
    Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications, vol 63. CiteseerGoogle Scholar
  27. 27.
    Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans Evol Comput 3:257–271CrossRefGoogle Scholar
  28. 28.
    Srinivas N, Deb K (1994) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2:221–248CrossRefGoogle Scholar
  29. 29.
    Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11:712–731CrossRefGoogle Scholar
  30. 30.
    Knowles JD, Corne DW (2000) Approximating the nondominated front using the Pareto archived evolution strategy. Evol Comput 8:149–172CrossRefGoogle Scholar
  31. 31.
    Abbass HA, Sarker R, Newton C (2001) PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of the 2001 congress on evolutionary computation, 2001, pp 971–978Google Scholar
  32. 32.
    Branke J, Kaußler T, Schmeck H (2001) Guidance in evolutionary multi-objective optimization. Adv Eng Softw 32:499– 507CrossRefMATHGoogle Scholar
  33. 33.
    Eberhart RC, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39– 43Google Scholar
  34. 34.
    Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766Google Scholar
  35. 35.
    Horn J, Nafpliotis N, Goldberg DE (1994) A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the 1st IEEE conference on evolutionary computation, 1994. IEEE world congress on computational intelligence, pp 82–87Google Scholar
  36. 36.
    Mahfoud SW (1995) Niching methods for genetic algorithms. Urbana 51:62–94Google Scholar
  37. 37.
    Horn JR, Nafpliotis N, Goldberg DE (1993) Multiobjective optimization using the niched pareto genetic algorithm. IlliGAL report, pp 61801–2296Google Scholar
  38. 38.
    Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98CrossRefGoogle Scholar
  39. 39.
    Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: a history and analysis. CiteseerGoogle Scholar
  40. 40.
    Sierra MR, Coello CAC (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Evolutionary multi-criterion optimization, pp 505–519Google Scholar
  41. 41.
    Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization, DTIC DocumentGoogle Scholar
  42. 42.
    Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary computation 8(2):173–195CrossRefGoogle Scholar
  43. 43.
    Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput & Applic 27:1053–1073CrossRefGoogle Scholar
  44. 44.
    Coello CAC (2000) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41:113– 127CrossRefGoogle Scholar
  45. 45.
    Sadollah A, Eskandar H, Kim JH (2015) Water cycle algorithm for solving constrained multi-objective optimization problems. Appl Soft Comput 27:279–298CrossRefGoogle Scholar
  46. 46.
    Srinivasan N, Deb K (1994) Multi-objective function optimisation using non-dominated sorting genetic algorithm. Evol Comput 2:221–248CrossRefGoogle Scholar
  47. 47.
    Binh TT, Korn U (1997) MOBES: A multiobjective evolution strategy for constrained optimization problems. In: The 3rd international conference on genetic algorithms (Mendel 97), p 7Google Scholar
  48. 48.
    Osyczka A, Kundu S (1995) A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Struct Optim 10:94–99CrossRefGoogle Scholar
  49. 49.
    Coello CC, Pulido GT (2005) Multiobjective structural optimization using a microgenetic algorithm. Struct Multidiscip Optim 30:388–403CrossRefGoogle Scholar
  50. 50.
    Kurpati A, Azarm S, Wu J (2002) Constraint handling improvements for multiobjective genetic algorithms. Struct Multidiscip Optim 23:204–213CrossRefGoogle Scholar
  51. 51.
    Ray T, Liew KM (2002) A swarm metaphor for multiobjective design optimization. Eng Optim 34:141–153CrossRefGoogle Scholar
  52. 52.
    Moussouni F, Brisset S, Brochet P (2007) Some results on the design of brushless DC wheel motor using SQP and GA. Int J Appl Electromagn Mech 26:233–241Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Seyedali Mirjalili
    • 1
    • 2
  • Pradeep Jangir
    • 3
  • Shahrzad Saremi
    • 1
    • 2
  1. 1.School of Information and Communication TechnologyGriffith UniversityBrisbaneAustralia
  2. 2.Griffith CollegeBrisbaneAustralia
  3. 3.Lukhdhirji Engineering CollegeGujaratIndia

Personalised recommendations