Advertisement

Applied Intelligence

, Volume 45, Issue 3, pp 868–880 | Cite as

Improved initial vertex ordering for exact maximum clique search

  • Pablo San SegundoEmail author
  • Alvaro Lopez
  • Mikhail Batsyn
  • Alexey Nikolaev
  • Panos M. Pardalos
Article

Abstract

This paper describes a new initial vertexordering procedure NEW_SORT designed to enhance approximate-colour exact algorithms for the maximum clique problem (MCP). NEW_SORT considers two different vertex orderings: degree and colour-based. The degree-based vertex ordering describes an improvement over a well-known vertex ordering used by exact solvers. Moreover, colour-based vertex orderings for the MCP have been traditionally considered suboptimal with respect to degree-based ones. NEW_SORT chooses the “best” of the two orderings according to a new evaluation function. The reported experiments on graphs taken from public datasets show that a leading exact solver using NEW_SORT —and further enhanced with a strong initial solution— can improve its performance very significantly (sometimes even exponentially).

Keywords

Maximum clique Branch-and-bound Approximate colouring Combinatorial optimization 

Notes

Acknowledgments

Pablo San Segundo and Alvaro Lopez are funded by the Spanish Ministry of Economy and Competitiveness (grants ARABOT: DPI 2010-21247-C02-01 and NAVEGASE: DPI 2014-53525-C3-1-R). Mikhail Batsyn, Alexey Nikolaev, and Panos M. Pardalos are supported by the Laboratory of Algorithms and Technologies for Network Analysis, NRU HSE. We would also like to thank Jorge Artieda for his help with the experiments. Finally, we express our gratitude to Chu-Min Li for providing the source code of MaxCLQ.

References

  1. 1.
    Konc J, Janezic D (2010) ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26:1160–1168CrossRefGoogle Scholar
  2. 2.
    Eblen J, Phillips C, Rogers G, Langston M (2012) The maximum clique enumeration problem: algorithms, applications, and implementations. BMC Bioinforma 13:S5CrossRefGoogle Scholar
  3. 3.
    Butenko S, Chaovalitwongse W, Pardalos P (eds) (2009) Clustering challenges in biological networks. World Scientific, SingaporeGoogle Scholar
  4. 4.
    San Segundo P, Artieda J (2015) A novel clique formulation for the visual feature matching problem. Appl Intell 43(2):325–342CrossRefGoogle Scholar
  5. 5.
    San Segundo P, Rodriguez-Losada D (2013) Robust global feature based data association with a sparse bit optimized maximum clique algorithm. IEEE Trans Robot 29(5):1332–1339CrossRefGoogle Scholar
  6. 6.
    Östergård P (2002) A fast algorithm for the maximum clique problem. Discrete Appl Math 120:1:97–207MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fahle T (2002) Simple and fast: Improving a -and-bound algorithm for maximum clique. In: Proceedings ESA-2002, pp 485–498Google Scholar
  8. 8.
    Tomita E, Seki T (2003) An efficient branch and bound algorithm for finding a maximum clique. In: Calude C, Dinneen M, Vajnovszki V (eds) Discrete Mathematics and Theoretical Computer Science. LNCS, vol 2731, pp 278–289Google Scholar
  9. 9.
    Tomita E, Sutani Y, Higashi T, Takahashi S, Wakatsuki M (2010) A simple and faster branch-and-bound algorithm for finding a maximum clique. LNCS 5942:191–203MathSciNetzbMATHGoogle Scholar
  10. 10.
    San Segundo P, Rodriguez-Losada D, Jimenez A (2011) An exact bit-parallel algorithm for the maximum clique problem. Comput Oper Res 38:2:571–581MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    San Segundo P, Matia F, Rodriguez-Losada D, Hernando M (2013) An improved bit parallel exact maximum clique algorithm. Optim Lett 7:3:467–479MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    San Segundo P, Tapia C (2014) Relaxed approximate coloring in exact maximum clique search. Comput Oper Res 44:185–192MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Li C-M, Quan Z (2010) An Efficient Branch-and-Bound Algorithm based on MaxSAT for the Maximum Clique Problem. In: Proceedings AAAI, pp 128–133Google Scholar
  14. 14.
    Li C-M, Quan Z (2010) Combining Graph Structure Exploitation and Propositional Reasoning for the Maximum Clique Problem. In: Proceedings ICTAI, pp 344–351Google Scholar
  15. 15.
    San Segundo P, Nikolaev A, Batsyn M (2015) Infra-chromatic bound for exact maximum clique search. Comput Oper Res 64:293–303MathSciNetCrossRefGoogle Scholar
  16. 16.
    Konc J, Janečič D (2007) An improved branch and bound algorithm for the maximum clique problem. MATCH Commun Math Comput Chem 58:569–590MathSciNetzbMATHGoogle Scholar
  17. 17.
    Batsyn M, Goldengorin B, Maslov E, Pardalos P (2014) Improvements to MCS algorithm for the maximum clique problem. J Comb Optim 27:397–416MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Li C-M, Fang Z, Xu K (2013) Combining MaxSAT Reasoning and Incremental Upper Bound for the Maximum Clique Problem. In: Proceedings ICTAI, pp 939–946Google Scholar
  19. 19.
    Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16:9:575–577CrossRefzbMATHGoogle Scholar
  20. 20.
    Balas E, Yu C (1986) Finding a maximum clique in an arbitrary graph. SIAM J Comput 15:4:1054–1068MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Prosser P (2012) Exact algorithms for maximum clique: a computational study. Algorithms 5:4:545–587MathSciNetCrossRefGoogle Scholar
  22. 22.
    Carraghan R, Pardalos P (1990) An exact algorithm for the maximum clique problem. Oper Res Lett 9:6:375–382CrossRefzbMATHGoogle Scholar
  23. 23.
    Personal communication with researchers Ciaran McCreesh and Patrick ProsserGoogle Scholar
  24. 24.
    Welsh D, Powell M (1976) An upper bound for the chromatic number of a graph and its application to timetabling problem. Comput J 10:1:85–86zbMATHGoogle Scholar
  25. 25.
    Syslo M (1989) Sequential coloring versus Welsh-Powell bound. Discret Math 74:241–243MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Leighton F (1979) A graph coloring algorithm for large scheduling problems. J Res Natl Bur Stand 84 (6):489–506MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wu Q, Hao J (2015) A review on algorithms for maximum clique problems. Eur J Oper Res 242:3:693–709MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Andrade D, Resende MG, Werneck R (2012) Fast local search for the maximum independent set problem. J Heuristics 18:4:525–547CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pablo San Segundo
    • 1
    Email author
  • Alvaro Lopez
    • 1
  • Mikhail Batsyn
    • 2
  • Alexey Nikolaev
    • 2
  • Panos M. Pardalos
    • 2
    • 3
  1. 1.Centre for Automation and Robotics (UPM-CSIC)MadridSpain
  2. 2.Laboratory of Algorithms and Technologies for Networks AnalysisNational Research University Higher School of EconomicsNiznhy NovgorodRussia
  3. 3.Center for Applied OptimizationUniversity of FloridaGainesvilleUSA

Personalised recommendations