Advertisement

Applied Intelligence

, Volume 40, Issue 3, pp 404–414 | Cite as

An evolutionary-based hyper-heuristic approach for the Jawbreaker puzzle

  • S. Salcedo-SanzEmail author
  • J. M. Matías-Román
  • S. Jiménez-Fernández
  • A. Portilla-Figueras
  • L. Cuadra
Article

Abstract

In this paper a hyper-heuristic algorithm is designed and developed for its application to the Jawbreaker puzzle. Jawbreaker is an addictive game consisting in a matrix of colored balls, that must be cleared by popping sets of balls of the same color. This puzzle is perfect to be solved by applying hyper-heuristics algorithms, since many different low-level heuristics are available, and they can be applied in a sequential fashion to solve the puzzle. We detail a set of low-level heuristics and a global search procedure (evolutionary algorithm) that conforms to a robust hyper-heuristic, able to solve very difficult instances of the Jawbreaker puzzle. We test the proposed hyper-heuristic approach in Jawbreaker puzzles of different size and difficulty, with excellent results.

Keywords

Jawbreaker puzzle Hyper-heuristics Evolutionary algorithms 

Notes

Acknowledgements

This work has been partially supported by Spanish Ministry of Science and Innovation, under project number ECO2010-22065-C03-02.

References

  1. 1.
    Hartmann D, van den Herik HJ, Iida H (eds) (2000) Games in AI research. ICGA J (special issue) 23(2) Google Scholar
  2. 2.
    Laird JE (2001) Using a computer game to develop advanced AI. Computer 34(7):70–75 CrossRefGoogle Scholar
  3. 3.
    Khoo A, Zubek R (2002) Applying inexpensive AI techniques to computer games. IEEE Intell Syst 17(4):48–53 CrossRefGoogle Scholar
  4. 4.
    Wallace SA, McCartney R, Russell I (2010) Games and machine learning: a powerful combination in an artificial intelligence course. Comput Sci Educ 20(1):17–36 CrossRefGoogle Scholar
  5. 5.
    Joyner D (2002) Adventures in group theory: Rubik’s cube, Merlin’s machine, and other mathematical toys. Johns Hopkins Press, Baltimore Google Scholar
  6. 6.
    Kunkle D, Cooperman G (2009) Harnessing parallel disks to solve Rubik’s cube. J Symb Comput 44(7):872–890 CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Ryabogin D (2012) On the continual Rubik’s cube. Adv Math 231(6):3429–3444 CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Kendall G, Parkes A, Spoerer K (2008) A survey of NP-complete puzzles. ICGA J 31(1):13–34 Google Scholar
  9. 9.
    Mantere T, Koljonen J (2007) Solving, rating and generating Sudoku puzzles with GA. In: Proc of the IEEE congress on evolutionary computation, pp 1382–1389 Google Scholar
  10. 10.
    Hereford JM, Gerlach H (2008) Integer-valued particle swarm optimization applied to Sudoku puzzles. In: Proc of the IEEE swarm intelligence symposium, pp 1–7 Google Scholar
  11. 11.
    Berghman L, Goossens D, Leus R (2009) Efficient solutions for MasterMind using genetic algorithms. Comput Oper Res 36(6):1880–1885 CrossRefzbMATHGoogle Scholar
  12. 12.
    Merelo-Guervós JJ, Castillo P, Rivas V (2006) Finding a needle in a haystack using hints and evolutionary computation: the case of evolutionary MasterMind. Appl Soft Comput 6(2):170–179 CrossRefGoogle Scholar
  13. 13.
    Chen KH (2000) Some practical techniques for global search in go. ICGA J 23(2):67–74 Google Scholar
  14. 14.
    Drake P (2009) The last-good-reply policy for Monte-Carlo go. ICGA J 32(4):221–227 MathSciNetGoogle Scholar
  15. 15.
    Tsai JT (2012) Solving Japanese nonograms by Taguchi-based genetic algorithm. Appl Intell 37(3):405–419 CrossRefGoogle Scholar
  16. 16.
    Batenburg KJ, Kosters WA (2009) Solving nonograms by combining relaxations. Pattern Recognit 42(8):1672–1683 CrossRefzbMATHGoogle Scholar
  17. 17.
    Jefferson C, Miguel A, Miguel I, Armagan-Tarim S (2006) Modelling and solving English peg solitaire. Comput Oper Res 33(10):2935–2959 CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Gindre F, Trejo Pizzo DA, Barrera G, Lopez De Luise MD (2010) A criterion-based genetic algorithm solution to the Jigsaw puzzle NP-complete problem. In: Proc of the world congress on engineering and computer science, pp 367–372 Google Scholar
  19. 19.
    van Eck NJ, van Wezel M (2008) Application of reinforcement learning to the game of Othello. Comput Oper Res 35(6):1999–2017 CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Lucas SS, Kendall G (2006) Evolutionary computation and games. IEEE Comput Intell Mag 1(1):10–18 CrossRefGoogle Scholar
  21. 21.
    Salcedo-Sanz S, Portilla-Figueras J, Bellido AP, Ortiz-García E, Yao X (2007) Teaching advanced features of evolutionary algorithms using Japanese puzzles. IEEE Trans Ed 50(2):151–155 CrossRefGoogle Scholar
  22. 22.
    Tsai JT, Chou PY, Fang JC (2012) Learning intelligent genetic algorithms using Japanese nonograms. IEEE Trans Ed 55(2):164–168 CrossRefGoogle Scholar
  23. 23.
    Pocket PC Jawbreaker Game, The ultimate guide to PDA games. http://www.pdagameguide.com/jawbreaker-game.html
  24. 24.
    Schadd MP, Winands MH, van den Herik HJ, Chaslot GM, Uiterwijk JW (2008) Single-player Monte-Carlo tree search. In: Proc of the 6th international conference on computers and games, pp 24–26 Google Scholar
  25. 25.
    Schadd MP, Winands MH, van den Herik HJ, Chaslot GM, Uiterwijk JW (2012) Single-player Monte-Carlo tree search for SameGame. Knowl-Based Syst 34:3–11 CrossRefGoogle Scholar
  26. 26.
    Burke EK, Hart E, Kendall G, Newall J, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic, Norwell, pp 457–474 Google Scholar
  27. 27.
    Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc., in press Google Scholar
  28. 28.
    Han L, Cowling PI, Kendall G (2002) An investigation of a hyperheuristic genetic algorithm applied to a trainer scheduling problem. In: Proceedings of congress on evolutionary computation (CEC2002), pp 1185–1190 Google Scholar
  29. 29.
    Sabar NR, Ayob M, Qu R, Kendall G (2011) A graph coloring constructive hyper-heuristic for examination timetabling problems. Applied Intelligence Google Scholar
  30. 30.
    Soghier A, Qu R (2013) Adaptive selection of heuristics for assigning time slots and rooms in exam timetables. Applied Intelligence, in press Google Scholar
  31. 31.
    Abuhamdah A, Ayob M, Kendall G, Sabar NR (2013) Population based local search for university course timetabling problems. Appl. Intell. (in press) Google Scholar
  32. 32.
    Hunt R, Neshatian K, Zhang M (2012) A genetic programming approach to hyper-heuristic feature selection. In: Proc of the 9th international conference on simulated evolution and learning (SEAL12). LNCS, vol 7673. Hanoi, Vietnam Google Scholar
  33. 33.
    Shafi K, Bender A, Abbass HA (2012) Multi-objective learning classifier systems based hyperheuristics for modularised fleet mix problem. In: Proc of the 9th international conference on simulated evolution and learning (SEAL12). LNCS, vol 7673/2012. Hanoi, Vietnam Google Scholar
  34. 34.
    Wauters T, Vancrooenburg W, Vanden Berghe G (2010) A two phase hyper-heuristic approach for solving the Eternity II puzzle. In: Proc of the 2nd international conference on metaheuristics and nature inspired computing (META10), Djerba Island, Tunisia Google Scholar
  35. 35.
    Wauters T, Vancrooenburg W, Vanden Berghe G (2012) A guide-and-observe hyper-heuristic approach to the Eternity II puzzle. Journal of Mathematical Modelling and Algorithms 11(3) Google Scholar
  36. 36.
    Burke EK, Kendall G, Soubeiga E (2003) A tabu-search hyper-heuristic for timetabling and rostering. J Heuristics 9(6):451–470 CrossRefGoogle Scholar
  37. 37.
    Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyperheuristic for educational timetabling problems. Eur J Oper Res 176:177–192 CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Cowling P, Kendall G, Soubeiga E (2001) A parameter-free hyperheuristic for scheduling a sales summit. In: Proc of the 4th metaheuristic international conference, pp 127–131 Google Scholar
  39. 39.
    Cowling P, Kendall G, Soubeiga E (2002) Hyperheuristics: a tool for rapid prototyping in scheduling and optimisation. In: Proc of EvoWorkshops 2002. Lecture notes in computer science, vol 2279, pp 1–10 Google Scholar
  40. 40.
    Burke EK, Hyde MR, Kendall G, Woodward J (2010) A genetic programming hyperheuristic approach for evolving two dimensional strip packing heuristics. IEEE Trans Evol Comput 14(6):942–958 CrossRefGoogle Scholar
  41. 41.
    Burke EK, Hyde MR, Kendall G, Woodward J (2007) The scalability of evolved on line bin packing heuristics. In: Proc of the IEEE congress on evolutionary computation, pp 2530–2537 Google Scholar
  42. 42.
    Bai R, Kendall G (2008) A model for fresh produce shelf-space allocation and inventory management with freshness-condition-dependent demand. INFORMS J Comput 20(1):78–85 CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    Bai R, Burke EK, Kendall G (2008) Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation. J Oper Res Soc 59:1387–1397 CrossRefzbMATHGoogle Scholar
  44. 44.
    Remde S, Cowling P, Dahal K, Colledge N, Selensky E (2011) An empirical study of hyperheuristics for managing very large sets of low level heuristics. J Oper Res Soc 63(3):392–405 CrossRefGoogle Scholar
  45. 45.
    Kendall G, Mohamad M (2004) Channel assignment in cellular communication using a great deluge hyper-heuristic. In: Proc of the IEEE international conference on network, pp 769–773 Google Scholar
  46. 46.
    Kendall G, Mohamad M (2004) Channel assignment optimisation using a hyper-heuristic. In: Proc of the IEEE conference on cybernetic and intelligent systems, pp 790–795 Google Scholar
  47. 47.
    Li J, Burke EK, Qu R (2011) Integrating neural networks and logistic regression to underpin hyper-heuristic search. Knowl-Based Syst 24(2):322–330 CrossRefGoogle Scholar
  48. 48.
    Furtuna R, Curteanu S, Leon F (2012) Multi-objective optimization of a stacked neural network using an evolutionary hyper-heuristic. Appl Soft Comput 12(1):133–144 CrossRefGoogle Scholar
  49. 49.
    Burke EK, Hyde M, Kendall G, Ochoa G, Ozcan E, Woodward J (2009) A classification of hyper-heuristics approaches. In: Gendreau M, Potvin J-Y (eds) Handbook of metaheuristics. International series in operations research and management science. Springer, Berlin Google Scholar
  50. 50.
    Ozcan E, Bilgin B, Korkmaz EE (2008) A comprehensive analysis of hyper-heuristics. Intell Data Anal 12(1):3–23 Google Scholar
  51. 51.
    Ross P (2005) In: Burke EK, Kendall G (eds) Hyper-heuristics, search methodologies: introductory tutorials in optimization and decision support techniques. Springer, Berlin, pp 529–556 CrossRefGoogle Scholar
  52. 52.
  53. 53.
  54. 54.
    Eiben AE, Smith JE (2003) Introduction to evolutionary computing, 1st edn. Natural computing series. Springer, Berlin CrossRefzbMATHGoogle Scholar
  55. 55.
  56. 56.
    Billings D (2007) Personal communication. University of Alberta, Canada Google Scholar
  57. 57.
    Takes FW, Kosters WA (2009) Solving SameGame and its chessboard variants. In: Proc of the 21st Benelux conference on artificial intelligence, Eindhoven, The Netherlands, pp 249–256 Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • S. Salcedo-Sanz
    • 1
    Email author
  • J. M. Matías-Román
    • 1
  • S. Jiménez-Fernández
    • 1
  • A. Portilla-Figueras
    • 1
  • L. Cuadra
    • 1
  1. 1.Department of Signal Theory and Communications, Escuela Politécnica SuperiorUniversidad de AlcaláMadridSpain

Personalised recommendations