Applied Intelligence

, Volume 40, Issue 2, pp 291–304 | Cite as

Ensemble canonical correlation analysis

  • C. Okan Sakar
  • Olcay Kursun
  • Fikret Gurgen


Canonical Correlation Analysis (CCA) aims at identifying linear dependencies between two different but related multivariate views of the same underlying semantics. Ignoring its various extensions to more than two views, CCA uses these two views as complex labels to guide the search of maximally correlated projection vectors (covariates). Therefore, CCA can overfit the training data, meaning that different correlated projections can be found when the two-view training dataset is resampled. Although, to avoid such overfitting, ensemble approaches that utilize resampling techniques have been effectively used for improving generalization of many machine learning methods, an ensemble approach has not yet been formulated for CCA. In this paper, we propose an ensemble method for obtaining a final set of covariates by combining multiple sets of covariates extracted from subsamples. In comparison to those obtained by the application of the classical CCA on the whole set of training data, combining covariates with weaker correlations extracted from a number of subsamples of the training data produces stronger correlations that generalize to unseen test examples. Experimental results on emotion recognition, digit recognition, content-based retrieval, and multiple view object recognition have shown that ensemble CCA has better generalization for both the test set correlations of the covariates and the test set accuracy of classification performed on these covariates.


Canonical correlation analysis (CCA) for feature extraction CCA with resampling Bagging weak covariates Ensemble learning Ensemble dimensionality reduction 



The work of C.O. Sakar is supported by the Ph.D. scholarship (2211) from Turkish Scientific Technical Research Council (TÜBİTAK). He is a Ph.D. student in the Computer Engineering Department at Bogazici University, Istanbul, Turkey.


  1. 1.
    Hotelling H (1936) Relations between two sets of variates. Biometrika 28:312–377 Google Scholar
  2. 2.
    Hardoon DR, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16:2639–2664 CrossRefzbMATHGoogle Scholar
  3. 3.
    Kettenring JR (1971) Canonical analysis of several sets of variables. Biometrika 58:433–451 CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Kursun O, Alpaydin E, Favorov OV (2011) Canonical correlation analysis using within-class coupling. Pattern Recognit Lett 32(2):134–144 CrossRefGoogle Scholar
  5. 5.
    Blaschko MB, Shelton JA, Bartels A, Lampert CH, Gretton A (2011) Semi-supervised kernel canonical correlation analysis with application to human fMRI. Pattern Recognit Lett 32(11):1572–1583 CrossRefGoogle Scholar
  6. 6.
    Hardoon DR, Ettinger U, Mourão-Miranda J, Antonova E, Collier D, Kumari V, Williams SCR, Brammer M (2009) Correlation-based multivariate analysis of genetic influence on brain ume. Neurosci Lett 450:281–286 CrossRefGoogle Scholar
  7. 7.
    Waaijenborg S, Zwinderman AH (2009) Correlating multiple SNPs and multiple disease phenotypes: penalized non-linear canonical correlation analysis. Bioinformatics 25(21):2764–2771 CrossRefGoogle Scholar
  8. 8.
    Tripathi A, Klami A, Kaski S (2008) Simple integrative preprocessing preserves what is shared in data sources. BMC Bioinform 9(111). doi: 10.1186/1471-2105-9-111
  9. 9.
    Gumus E, Kursun O, Sertbas A, Ustek D (2012) Application of canonical correlation analysis for identifying viral integration preferences. Bioinformatics 28(5):651–655 CrossRefGoogle Scholar
  10. 10.
    Tsay RS, Ling S (2008) Canonical correlation analysis for the vector AR(1) model with ARCH innovations. J Stat Plan Inference 138(9):2826–2836 CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Mishra SK (2009) Representation-constrained canonical correlation analysis: a hybridization of canonical correlation and principal component analyses. J Appl Econ Sci IV(7):115–124 Google Scholar
  12. 12.
    Romanazzi M (1992) Influence in canonical correlation analysis. Psychometrika 57:237–259 CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Branco JA, Croux C, Filzmoser P, Oliveira MR (2005) Robust canonical correlations: a comparative study. Comput Stat 20:203–229 CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Sakar CO, Kursun O (2012) A method for combining mutual information and canonical correlation analysis: predictive mutual information and its use in feature selection. Expert Syst Appl 39(3):3333–3344 CrossRefGoogle Scholar
  15. 15.
    Lai PL, Fyfe C (1999) A neural implementation of canonical correlation analysis. Neural Netw 12(10):1391–1397 CrossRefGoogle Scholar
  16. 16.
    Hsieh WW (2000) Nonlinear canonical correlation analysis by neural networks. Neural Netw 13(10):1095–1105 CrossRefGoogle Scholar
  17. 17.
    Via J, Santamaria I, Perez J (2007) A learning algorithm for adaptive canonical correlation analysis of several data sets. Neural Netw 20:139–152 CrossRefzbMATHGoogle Scholar
  18. 18.
    Karnel G (1991) Robust canonical correlation and correspondence analysis. In: The frontiers of statistical scientific and industrial applications. Proceedings of ICOSCO-I, The first international conference on statistical computing, vol II. American Sciences Press, Strassbourg, pp 335–354 Google Scholar
  19. 19.
    Croux C, Dehon C (2002) Analyse canonique basee sur des estimateurs robustes de la matrice de covariance. Rev Stat Appl 2:5–26 Google Scholar
  20. 20.
    Taskinen S, Croux C, Kankainen A, Ollila E, Oja H (2006) Canonical analysis based on scatter matrices. J Multivar Anal 97(2):359–384 CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Archambeau C, Delannay N, Verleysen M (2006) Robust probabilistic projections. In: Cohen W, Moore A (eds) Proceedings of ICML 2006, The 23rd international conference on machine learning. ACM, New York, pp 33–40 Google Scholar
  22. 22.
    Viinikanoja J, Klami A, Kaski S (2010) Variational Bayesian mixture of robust CCA models, ECML PKDD 2010. Springer, Berlin, pp 370–385 Google Scholar
  23. 23.
    Bach FR, Jordan MI (2005) A probabilistic interpretation of canonical correlation analysis. Tech Rep 688, Department of Statistics, University of California, Berkeley Google Scholar
  24. 24.
    Alpaydın E (2004) Introduction to machine learning. MIT Press, Cambridge, pp 351–371 Google Scholar
  25. 25.
    Hansen L, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12:993–1001 CrossRefGoogle Scholar
  26. 26.
    Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140 zbMATHMathSciNetGoogle Scholar
  27. 27.
    Sharkey A (1999) Combining artificial neural nets. Springer, Berlin CrossRefzbMATHGoogle Scholar
  28. 28.
    Ghosh J (2002) Multiclassier systems: back to the future, (invited paper). In: Roli F, Kittler J (eds) Multiple classier systems. Springer, Berlin, pp 1–15 CrossRefGoogle Scholar
  29. 29.
    Okun O, Priisalu H (2005) Multiple views in ensembles of nearest neighbor classifiers. In: Proceedings of the workshop on learning with multiple views, 22nd ICML, Bonn, Germany Google Scholar
  30. 30.
    Lee H, Kim E, Pedrycz W (2013) A new selective neural network ensemble with negative correlation. Appl Intell 37(4):488–498. doi: 10.1007/s10489-012-0342-3 CrossRefGoogle Scholar
  31. 31.
    Tay WL, Chui CK, Ong SH, Ng ACM (2013) Ensemble-based regression analysis of multimodal medical data for osteopenia diagnosis. Expert Syst Appl 40(2):811–819. doi: 10.1016/j.eswa.2012.08.031 CrossRefGoogle Scholar
  32. 32.
    Siwek K, Osowski S (2012) Improving the accuracy of prediction of PM10 pollution by the wavelet transformation and an ensemble of neural predictors. Eng Appl Artif Intell 25(6):1246–1258. doi: 10.1016/j.engappai.2011.10.013 CrossRefGoogle Scholar
  33. 33.
    Khor KC, Ting CY, Phon-Amnuaisuk S (2012) A cascaded classifier approach for improving detection rates on rare attack categories in network intrusion detection. Appl Intell 36(2):320–329 CrossRefGoogle Scholar
  34. 34.
    Garcia-Nieto J, Alba E (2012) Parallel multi-swarm optimizer for gene selection in DNA microarrays. Appl Intell 37(2):255–266 CrossRefGoogle Scholar
  35. 35.
    Strehl A, Ghosh J (2002) Cluster ensembles—a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 3:583–617 MathSciNetGoogle Scholar
  36. 36.
    Masoud H, Jalili S, Hasheminejad SMH (2013) Dynamic clustering using combinatorial particle swarm optimization. Appl Intell 38(3):289–314. doi: 10.1007/s10489-012-0373-9 CrossRefGoogle Scholar
  37. 37.
    Ayad HG, Kamel MS (2010) On voting-based consensus of cluster ensembles. Pattern Recognit 43(5):1943–1953 CrossRefzbMATHGoogle Scholar
  38. 38.
    Lu Z, Peng Y, Horace HS (2011) Combining multiple clusterings using fast simulated annealing. Pattern Recognit Lett 32(15):1956–1961 CrossRefGoogle Scholar
  39. 39.
    Mimaroglu S, Erdil E (2011) Combining multiple clusterings using similarity graph. Pattern Recognit 44:694–703 CrossRefzbMATHGoogle Scholar
  40. 40.
    Zhang J, Zhang D (2011) A novel ensemble construction method for multi-view data using random cross-view correlation between within-class examples. Pattern Recognit 44:1162–1171 CrossRefzbMATHGoogle Scholar
  41. 41.
    Mo KC, Thiaw WM (2002) Ensemble canonical correlation prediction of precipitation over the Sahel. Geophys Res Lett 29(12):4 CrossRefGoogle Scholar
  42. 42.
    Shao J, Tu D (1995) The jackknife and bootstrap. Springer, Berlin CrossRefzbMATHGoogle Scholar
  43. 43.
    Lucey P, Cohn JF, Kanade T, Saragih J, Ambadar Z, Matthews I (2010) The extended Cohn-Kande dataset (CK+): a complete facial expression dataset for action unit and emotion-specified expression. In: Third IEEE workshop on CVPR for human communicative behavior analysis Google Scholar
  44. 44.
    Karaali A (2012) Face detection and facial expression recognition using moment invariants. MSc Thesis, Bahcesehir University Google Scholar
  45. 45.
    Sakar CO, Kursun O, Karaali A, Erdem CE (2012) Feature extraction for facial expression recognition by canonical correlation analysis. In: IEEE 20th signal processing and applications conference (SIU), Mugla, Turkey Google Scholar
  46. 46.
    Ulukaya S (2011) Affect recognition from facial expressions for human–computer interaction. MSc Thesis, Bahcesehir University Google Scholar
  47. 47.
    Asuncion A, Newman DJ (2007) UCI machine learning repository. University of California, Department of Information and Computer Science, Irvine, CA Google Scholar
  48. 48.
    Xing EP, Yan R, Hauptmann AG (2005) Mining associated text and images with dual-wing harmoniums. In: Conference on uncertainty in artificial intelligence, pp 633–641 Google Scholar
  49. 49.
    Nene S, Nayar S, Murase H (1996) Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96, New York: Columbia Univ, Press Google Scholar
  50. 50.
    Hsu CW, Lin CJ (2002) A comparison of methods for multi-class support vector machines. IEEE Trans Neural Netw 13:415–425 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer EngineeringBahcesehir UniversityBesiktas, IstanbulTurkey
  2. 2.Department of Computer EngineeringIstanbul University, AvcilarIstanbulTurkey
  3. 3.Department of Computer EngineeringBogazici UniversityBebek, IstanbulTurkey

Personalised recommendations