Advertisement

Applied Intelligence

, Volume 40, Issue 2, pp 256–272 | Cite as

An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation

  • Erik Cuevas
  • Alonso Echavarría
  • Marte A. Ramírez-Ortegón
Article

Abstract

The ability of an Evolutionary Algorithm (EA) to find a global optimal solution depends on its capacity to find a good rate between exploitation of found-so-far elements and exploration of the search space. Inspired by natural phenomena, researchers have developed many successful evolutionary algorithms which, at original versions, define operators that mimic the way nature solves complex problems, with no actual consideration of the exploration-exploitation balance. In this paper, a novel nature-inspired algorithm called the States of Matter Search (SMS) is introduced. The SMS algorithm is based on the simulation of the states of matter phenomenon. In SMS, individuals emulate molecules which interact to each other by using evolutionary operations which are based on the physical principles of the thermal-energy motion mechanism. The algorithm is devised by considering each state of matter at one different exploration–exploitation ratio. The evolutionary process is divided into three phases which emulate the three states of matter: gas, liquid and solid. In each state, molecules (individuals) exhibit different movement capacities. Beginning from the gas state (pure exploration), the algorithm modifies the intensities of exploration and exploitation until the solid state (pure exploitation) is reached. As a result, the approach can substantially improve the balance between exploration–exploitation, yet preserving the good search capabilities of an evolutionary approach. To illustrate the proficiency and robustness of the proposed algorithm, it is compared to other well-known evolutionary methods including novel variants that incorporate diversity preservation schemes. The comparison examines several standard benchmark functions which are commonly considered within the EA field. Experimental results show that the proposed method achieves a good performance in comparison to its counterparts as a consequence of its better exploration–exploitation balance.

Keywords

Evolutionary algorithms Global optimization Nature-inspired algorithms 

Notes

Acknowledgements

The proposed algorithm is part of the optimization system used by a biped robot supported under the grant CONACYT CB 181053.

References

  1. 1.
    Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell. doi: 10.1007/s10489-012-0393-5 Google Scholar
  2. 2.
    Pardalos Panos M, Romeijn Edwin H, Tuy H (2000) Recent developments and trends in global optimization. J Comput Appl Math 124:209–228 CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Floudas C, Akrotirianakis I, Caratzoulas S, Meyer C, Kallrath J (2005) Global optimization in the 21st century: advances and challenges. Comput Chem Eng 29(6):1185–1202 CrossRefGoogle Scholar
  4. 4.
    Ying J, Ke-Cun Z, Shao-Jian Q (2007) A deterministic global optimization algorithm. Appl Math Comput 185(1):382–387 CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Georgieva A, Jordanov I (2009) Global optimization based on novel heuristics, low-discrepancy sequences and genetic algorithms. Eur J Oper Res 196:413–422 CrossRefzbMATHGoogle Scholar
  6. 6.
    Lera D, Sergeyev Ya (2010) Lipschitz and Hölder global optimization using space-filling curves. Appl Numer Math 60(1–2):115–129 CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, Chichester zbMATHGoogle Scholar
  8. 8.
    De Jong K (1975) Analysis of the behavior of a class of genetic adaptive systems. Ph.D. Thesis, University of Michigan, Ann Arbor, MI Google Scholar
  9. 9.
    Koza JR (1990) Genetic programming: a paradigm for genetically breeding populations of computer programs to solve problems. Rep. No. STAN-CS-90-1314, Stanford University, CA Google Scholar
  10. 10.
    Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor Google Scholar
  11. 11.
    Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison Wesley, Boston zbMATHGoogle Scholar
  12. 12.
    de Castro LN, Von Zuben FJ (1999) Artificial immune systems: Part I—basic theory and applications. Technical report TR-DCA 01/99 Google Scholar
  13. 13.
    Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global optimisation over continuous spaces. Tech. Rep. TR-95–012, ICSI, Berkeley, CA Google Scholar
  14. 14.
    Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220(4598):671–680 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    İlker B, Birbil S, Shu-Cherng F (2003) An electromagnetism-like mechanism for global optimization. J Glob Optim 25:263–282 CrossRefzbMATHGoogle Scholar
  16. 16.
    Rashedia E, Nezamabadi-pour H, Saryazdi S (2011) Filter modeling using gravitational search algorithm. Eng Appl Artif Intell 24(1):117–122 CrossRefGoogle Scholar
  17. 17.
    Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the 1995 IEEE international conference on neural networks, December 1995, vol 4, pp 1942–1948 Google Scholar
  18. 18.
    Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Technical Report No. 91-016, Politecnico di Milano Google Scholar
  19. 19.
    Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197:701–713 CrossRefzbMATHGoogle Scholar
  20. 20.
    Chen G, Low CP, Yang Z (2009) Preserving and exploiting genetic diversity in evolutionary programming algorithms. IEEE Trans Evol Comput 13(3):661–673 CrossRefGoogle Scholar
  21. 21.
    Liu S-H, Mernik M, Bryant B (2009) To explore or to exploit: an entropy-driven approach for evolutionary algorithms. Int J Knowl-Based Intell Eng Syst 13(3):185–206 Google Scholar
  22. 22.
    Alba E, Dorronsoro B (2005) The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans Evol Comput 9(3):126–142 CrossRefGoogle Scholar
  23. 23.
    Fister I, Mernik M, Filipič B (2010) A hybrid self-adaptive evolutionary algorithm for marker optimization in the clothing industry. Appl Soft Comput 10(2):409–422 CrossRefGoogle Scholar
  24. 24.
    Gong W, Cai Z, Jiang L (2008) Enhancing the performance of differential evolution using orthogonal design method. Appl Math Comput 206(1):56–69 CrossRefzbMATHGoogle Scholar
  25. 25.
    Joan-Arinyo R, Luzon MV, Yeguas E (2011) Parameter tuning of pbil and chc evolutionary algorithms applied to solve the root identification problem. Appl Soft Comput 11(1):754–767 CrossRefGoogle Scholar
  26. 26.
    Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696 CrossRefGoogle Scholar
  27. 27.
    Sadegh M, Reza M, Palhang M (2012) LADPSO: using fuzzy logic to conduct PSO algorithm. Appl Intell 37(2):290–304 CrossRefGoogle Scholar
  28. 28.
    Yadav P, Kumar R, Panda SK, Chang CS (2012) An intelligent tuned harmony search algorithm for optimization. Inf Sci 196(1):47–72 CrossRefGoogle Scholar
  29. 29.
    Khajehzadeh M, Raihan Taha M, El-Shafie A, Eslami M (2012) A modified gravitational search algorithm for slope stability analysis. Eng Appl Artif Intell 25(8):1589–1597 CrossRefGoogle Scholar
  30. 30.
    Koumousis V, Katsaras CP (2006) A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans Evol Comput 10(1):19–28 CrossRefGoogle Scholar
  31. 31.
    Han M-F, Liao S-H, Chang J-Y, Lin C-T (2012) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell. doi: 10.1007/s10489-012-0393-5 Google Scholar
  32. 32.
    Brest J, Maučec, MS (2008) Population size reduction for the differential evolution algorithm. Appl Intell 29(3):228–247 CrossRefGoogle Scholar
  33. 33.
    Li Y, Zeng X (2010) Multi-population co-genetic algorithm with double chain-like agents structure for parallel global numerical optimization. Appl Intell 32(3):292–310 CrossRefGoogle Scholar
  34. 34.
    Paenke I, Jin Y, Branke J (2009) Balancing population- and individual-level adaptation in changing environments. Adapt Behav 17(2):153–174 CrossRefGoogle Scholar
  35. 35.
    Araujo L, Merelo JJ (2011) Diversity through multiculturality: assessing migrant choice policies in an island model. IEEE Trans Evol Comput 15(4):456–468 CrossRefGoogle Scholar
  36. 36.
    Gao H, Xu W (2011) Particle swarm algorithm with hybrid mutation strategy. Appl Soft Comput 11(8):5129–5142 CrossRefGoogle Scholar
  37. 37.
    Jia D, Zheng G, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):3175–3187 CrossRefGoogle Scholar
  38. 38.
    Lozano M, Herrera F, Cano JR (2008) Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf Sci 178(23):4421–4433 CrossRefGoogle Scholar
  39. 39.
    Ostadmohammadi B, Mirzabeygi P, Panahi M (2013) An improved PSO algorithm with a territorial diversity-preserving scheme and enhanced exploration–exploitation balance. Swarm Evol Comput 11:1–15 CrossRefGoogle Scholar
  40. 40.
    Yang G-P, Liu S-Y, Zhang J-K, Feng Q-X (2012) Control and synchronization of chaotic systems by an improved biogeography-based optimization algorithm. Appl Intell. doi: 10.1007/s10489-012-0398-0 Google Scholar
  41. 41.
    Hasanzadeh M, Meybodi MR, Ebadzadeh MM (2012) Adaptive cooperative particle swarm optimizer. Appl Intell. doi: 10.1007/s10489-012-0420-6 Google Scholar
  42. 42.
    Aribarg T, Supratid S, Lursinsap C (2012) Optimizing the modified fuzzy ant-miner for efficient medical diagnosis. Appl Intell 37(3):357–376 CrossRefGoogle Scholar
  43. 43.
    Fernandes CM, Laredo JLJ, Rosa AC, Merelo JJ (2012) The sandpile mutation Genetic Algorithm: an investigation on the working mechanisms of a diversity-oriented and self-organized mutation operator for non-stationary functions. Appl Intell. doi: 10.1007/s10489-012-0413-5 Google Scholar
  44. 44.
    Gwak J, Sim KM (2013) A novel method for coevolving PS-optimizing negotiation strategies using improved diversity controlling EDAs. Appl Intell 38(3):384–417 CrossRefGoogle Scholar
  45. 45.
    Cheshmehgaz HR, Ishak Desa M, Wibowo A (2013) Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Appl Intell 38(3):331–356 CrossRefGoogle Scholar
  46. 46.
    Cuevas E, González M (2012) Multi-circle detection on images inspired by collective animal behaviour. Appl Intell. doi: 10.1007/s10489-012-0396-2 Google Scholar
  47. 47.
    Adra SF, Fleming PJ (2011) Diversity management in evolutionary many-objective optimization. IEEE Trans Evol Comput 15(2):183–195 CrossRefGoogle Scholar
  48. 48.
    Črepineš M, Liu SH, Mernik M (2011) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 1(1):1–33 Google Scholar
  49. 49.
    Ceruti MG, Rubin, SH (2007) Infodynamics: Analogical analysis of states of matter and information. Inf Sci 177:969–987 CrossRefGoogle Scholar
  50. 50.
    Chowdhury D, Stauffer D (2000) Principles of equilibrium statistical mechanics. Wiley-VCH, New York CrossRefzbMATHGoogle Scholar
  51. 51.
    Betts DS, Turner RE (1992) Introductory statistical mechanics, 1st edn. Addison Wesley, Reading Google Scholar
  52. 52.
    Cengel YA, Boles MA (2005) Thermodynamics: an engineering approach, 5th edn. McGraw-Hill, New York Google Scholar
  53. 53.
    Bueche F, Hecht E (2011) Schaum’s outline of college physics, 11th edn. McGraw-Hill, New York Google Scholar
  54. 54.
    Piotrowski AP, Napiorkowski JJ, Kiczko A (2012) Differential evolution algorithm with separated groups for multi-dimensional optimization problems. Eur J Oper Res 216(1):33–46 CrossRefzbMATHMathSciNetGoogle Scholar
  55. 55.
    Cocco Mariani V, Justi Luvizotto LG, Alessandro Guerra F, dos Santos Coelho L (2011) A hybrid shuffled complex evolution approach based on differential evolution for unconstrained optimization. Appl Math Comput 217(12):5822–5829 CrossRefzbMATHMathSciNetGoogle Scholar
  56. 56.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3(2):82–102 CrossRefGoogle Scholar
  57. 57.
    Moré JJ, Garbow BS, Hillstrom KE (1981) Testing unconstrained optimization software. ACM Trans Math Softw 7(1):17–41 CrossRefzbMATHGoogle Scholar
  58. 58.
    Tsoulos IG (2008) Modifications of real code genetic algorithm for global optimization. Appl Math Comput 203(2):598–607 CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    Black-Box Optimization Benchmarking (BBOB) 2010, 2nd GECCO Workshop for Real-Parameter Optimization. http://coco.gforge.inria.fr/doku.php?id=bbob-2010
  60. 60.
    Abdel-Rahman Hedar, Ali AF (2012) Tabu search with multi-level neighborhood structures for high dimensional problems. Appl Intell 37(2):189–206 CrossRefGoogle Scholar
  61. 61.
    Vafashoar R, Meybodi MR, Momeni Azandaryani AH (2012) CLA-DE: a hybrid model based on cellular learning automata for numerical optimization. Appl Intell 36(3):735–748 CrossRefGoogle Scholar
  62. 62.
    Garcia S, Molina D, Lozano M, Herrera F (2008) A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J Heuristics. doi: 10.1007/s10732-008-9080-4 Google Scholar
  63. 63.
    Shilane D, Martikainen J, Dudoit S, Ovaska S (2008) A general framework for statistical performance comparison of evolutionary computation algorithms. Inf Sci 178:2870–2879 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Erik Cuevas
    • 1
  • Alonso Echavarría
    • 1
  • Marte A. Ramírez-Ortegón
    • 2
  1. 1.Departamento de ElectrónicaUniversidad de Guadalajara, CUCEIGuadalajaraMéxico
  2. 2.Institut für NachrichtentechnikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations