Applied Intelligence

, Volume 39, Issue 4, pp 793–804 | Cite as

A real-time transportation prediction system

  • Haiguang Li
  • Zhao Li
  • Robert T. White
  • Xindong Wu
Article
  • 426 Downloads

Abstract

In recent years, the use of advanced technologies such as wireless communication and sensors in intelligent transportation systems has made a significant increase in traffic data available. With this data, traffic prediction has the ability to improve traffic conditions and to reduce travel delays by facilitating better utilization of available capacity. This paper presents a real-time transportation prediction system named VTraffic for Vermont Agencies of Transportation by integrating traffic flow theory, advanced sensors, data gathering, data integration, data mining and visualization technologies to estimate and visualize the current and future traffic. In the VTraffic system, acoustic sensors were installed to monitor and to collect real-time data. Reliable predictions can be obtained from historical data and be verified and refined by the current and near future real-time data.

Keywords

Sensors Intelligent transportation system Traffic prediction Real-time Data mining Visualization 

References

  1. 1.
    Schrank D, Lomax T, Eisele B (2011) Urban mobility report. Technical report, Texas Transportation Institute Google Scholar
  2. 2.
    Chien SIJ, Liu X, Ozbay K (2007) Predicting travel times for the south jersey real-time motorist information system. J Transp Res Board 1885(2003):32–40 Google Scholar
  3. 3.
    Aksaç A, Uzun E, Özyer T (2012) A real time traffic simulator utilizing an adaptive fuzzy inference mechanism by tuning fuzzy parameters. Appl Intell 36:698–720 CrossRefGoogle Scholar
  4. 4.
    Wu J, Abbas Turki A, El Moudni A (2012) Cooperative driving: an ant colony system for autonomous intersection management. Appl Intell 37:207–222 CrossRefGoogle Scholar
  5. 5.
    Lu E, Lee W, Tseng V (2011) Mining fastest path from trajectories with multiple destinations in road networks. Knowl Inf Syst 29:25–53 CrossRefGoogle Scholar
  6. 6.
    Castillo E, Nogal M, Menéndez JM, Sánchez-Cambronero S, Jiménez P (2012) Stochastic demand dynamic traffic models using generalized beta-Gaussian Bayesian networks. IEEE Trans Intell Transp Syst 13(2):565–581 CrossRefGoogle Scholar
  7. 7.
    FHWA (2011) FHWA operations—operations story Google Scholar
  8. 8.
    Basicevic I, Kukolj D, Popovic M (2011) On the application of fuzzy-based flow control approach to high altitude platform communications. Appl Intell 34:199–210 CrossRefGoogle Scholar
  9. 9.
    Warden T, Visser U (2012) Real-time spatio-temporal analysis of dynamic scenes. Knowl Inf Syst 32:243–279 CrossRefGoogle Scholar
  10. 10.
    Google Fusion Table. https://www.google.com/fusiontables/
  11. 11.
  12. 12.
    Tan J, Lu E, Tseng V (2012) Preference-oriented mining techniques for location-based store search. Knowl Inf Syst 1–23. doi:10.1007/s10115-011-0475-4
  13. 13.
    Vaisala Homepage. http://www.vaisala.com/
  14. 14.
    Pisano PA, Goodwin LC, Rossetti MA (2008) US highway crashes in adverse road weather conditions. In: Proceedings of the 88th American meteorological society annual meeting, New Orleans, Louisiana Google Scholar
  15. 15.
    Pisano P (2009) Clarus success stories: using clarus data to improve operations. Technical report FHWA-JPO-10-005, US Department of Transportation Road Weather Management Google Scholar
  16. 16.
  17. 17.
    Bohlooli A, Jamshidi K (2012) A gps-free method for vehicle future movement directions prediction using som for vanet. Appl Intell 36(3):685–697 CrossRefGoogle Scholar
  18. 18.
    Athitsos V, Alon J, Sclaroff S (2005) Efficient nearest neighbor classification using a cascade of approximate similarity measures. In: Proceedings of the 2005 IEEE conference on computer vision and pattern recognition, Washington, DC, USA, pp 486–493 CrossRefGoogle Scholar
  19. 19.
    Liu H, Motoda H, Setiono R, Zhao Z (2010) Feature selection: an ever evolving frontier in data mining. J Mach Learn Res 10:4–13 Google Scholar
  20. 20.
    Altinçay H, Erenel Z (2012) Using the absolute difference of term occurrence probabilities in binary text categorization. Appl Intell 36:148–160 CrossRefGoogle Scholar
  21. 21.
    Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5:537–550 CrossRefGoogle Scholar
  22. 22.
    Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238 CrossRefGoogle Scholar
  23. 23.
    Kenji K, Rendell LA (1992) The feature selection problem: traditional methods and a new algorithm. In: Proceedings of the 10th national conference on artificial intelligence, pp 129–134 Google Scholar
  24. 24.
    Yang S, Hu B (2012) Discriminative feature selection by nonparametric Bayes error minimization. IEEE Trans Knowl Data Eng 24(8):1422–1434 MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kurgan LA, Cios KJ (2004) Caim discretization algorithm. IEEE Trans Knowl Data Eng 16:145–153 CrossRefGoogle Scholar
  26. 26.
    RITIS system. https://www.ritis.org/
  27. 27.
    Brown G, Pocock A, Zhao MJ, Luján M (2012) Conditional likelihood maximisation: a unifying framework for information theoretic feature selection. J Mach Learn Res 13:27–66 MathSciNetGoogle Scholar
  28. 28.
  29. 29.
    John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the 11th conference on uncertainty in artificial intelligence, CA, USA, pp 338–345 Google Scholar
  30. 30.
    Quinlan JR (1996) Bagging, boosting, and c4.5. In: Proceedings of the 13th national conference on artificial intelligence, pp 725–730 Google Scholar
  31. 31.
    Breiman L (2001) Random forests. Mach Learn 45(1):5–32 CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Haiguang Li
    • 1
  • Zhao Li
    • 2
  • Robert T. White
    • 3
  • Xindong Wu
    • 1
  1. 1.The University of VermontBurlingtonUSA
  2. 2.TCL Research AmericaSanta ClaraUSA
  3. 3.State of Vermont AOTMontpelierUSA

Personalised recommendations