Applied Intelligence

, Volume 39, Issue 2, pp 217–235 | Cite as

BA*: an online complete coverage algorithm for cleaning robots

  • Hoang Huu Viet
  • Viet-Hung Dang
  • Md Nasir Uddin Laskar
  • TaeChoong Chung


This paper presents a novel approach to solve the online complete coverage task of autonomous cleaning robots in unknown workspaces based on the boustrophedon motions and the A* search algorithm (BA*). In this approach, the robot performs a single boustrophedon motion to cover an unvisited region until it reaches a critical point. To continue covering the next unvisited region, the robot wisely detects backtracking points based on its accumulated knowledge, determines the best backtracking point as the starting point of the next boustrophedon motion, and applies an intelligent backtracking mechanism based on the proposed A* search with smoothed path on tiling so as to reach the starting point with the shortest collision-free path. The robot achieves complete coverage when no backtracking point is detected. Computer simulations and experiments in real workspaces prove that our proposed BA* is efficient for the complete coverage task of cleaning robots.


A* search algorithm Boustrophedon motions Cleaning robot Complete coverage 



The authors are grateful to the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2010-0012609) for its tremendous support to this work’s completion.


  1. 1.
    Acar EU, Choset H, Rizzi AA, Atkar PN, Hull D (2002) Morse decompositions for coverage tasks. Int J Robot Res 21(4):331–344 CrossRefGoogle Scholar
  2. 2.
    Botea A, Müller M, Schaeffer J (2004) Near optimal hierarchical path-finding. J Game Dev 1(1):7–28 Google Scholar
  3. 3.
    Chibin Z, Xingsong W, Yong D (2008) Complete coverage path planning based on ant colony algorithm. In: Proceedings of the 15th international conference on mechatronics and machine vision in practice, Auckland, New-Zealand, pp 357–361 CrossRefGoogle Scholar
  4. 4.
    Choset H (2000) Coverage of known spaces: the boustrophedon cellular decomposition. Auton Robots 9(1):247–253 CrossRefGoogle Scholar
  5. 5.
    Choset H (2001) Coverage for robotics—a survey of recent results. Ann Math Artif Intell 31(1–4):113–126 CrossRefGoogle Scholar
  6. 6.
    Choset H, Pignon P (1997) Coverage path planning: the boustrophedon cellular decomposition. In: Proceedings of the international conference on field and service robotics, Canberra, Australia Google Scholar
  7. 7.
    Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271 MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dlouhy M, Brabec F, Svestka P (2000) A genetic approach to the cleaning path planning problem. In: Proceedings of the 16th European workshop on computational geometry, Eilat, Israel Google Scholar
  9. 9.
    Dudek G, Jenkin M (2010) Computational principles of mobile robotics, 2nd edn. Cambridge Univerity Press, Cambridge zbMATHCrossRefGoogle Scholar
  10. 10.
    Esposito JM, Barton O, Koehler J, Lim D (2011) Matlab toolbox for the create robot.
  11. 11.
    Gabriely Y, Rimon E (2001) Spanning-tree based coverage of continuous areas by a mobile robot. Ann Math Artif Intell 31(4):77–98 CrossRefGoogle Scholar
  12. 12.
    Gabriely Y, Rimon E (2002) Spiral-STC: an on-line coverage algorithm of grid environments by a mobile robot. In: Proceedings of the IEEE international conference on robotics and automation, Washington, DC, USA, pp 954–960 Google Scholar
  13. 13.
    González E, Aristizábal PT, Alarcón MA (2002) Backtracking spiral algorithm: a mobile robot region filling strategy. In: Proceeding of the 2002 international symposium on robotics and automation, Toluca, Mexico, pp 261–266 Google Scholar
  14. 14.
    González E, Álvarez O, Díaz Y, Parra C, Bustacara C (2005) BSA: a complete coverage algorithm. In: Proceedings of the IEEE international conference on robotics and automation, Barcelona, Spain, pp 2040–2044 Google Scholar
  15. 15.
    Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107 CrossRefGoogle Scholar
  16. 16.
    Koenig S, Liu Y (2001) Terrain coverage with ant robots: a simulation study. In: Proceedings of the international conference on autonomous agents, Montreal, Quebec, Canada, pp 600–607 CrossRefGoogle Scholar
  17. 17.
    Korf RE, Reid M, Edelkamp S (2001) Time complexity of iterative-deepening-A*. Artif Intell 129(1–2):199–218 MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Latombe JC (1991) Robot motion planning. Kluwer Academic, Amsterdam CrossRefGoogle Scholar
  19. 19.
    Luo C, Yang SX (2008) A bioinspired neural network for real-time concurrent map building and complete coverage robot navigation in unknown environments. IEEE Trans Neural Netw 19(1):1279–1298 CrossRefGoogle Scholar
  20. 20.
    Mannadiar R, Rekleitis I (2010) Optimal coverage of a known arbitrary environment. In: Proceedings of the IEEE international conference on robotics and automation, Anchorage, Alaska, USA, pp 5525–5530 Google Scholar
  21. 21.
    Mendonça M, de Arruda LVR, Jr FN (2012) Autonomous navigation system using event driven-fuzzy cognitive maps. Appl Intell 37(1):175–188 CrossRefGoogle Scholar
  22. 22.
    Nash A, Daniel K, Koenig S, Felner A (2007) Theta*: any-angle path planning on grids. In: Proceedings of the AAAI conference on artificial intelligence, Vancouver, Canada, pp 1177–1183 Google Scholar
  23. 23.
    Oh JS, Choi YH, Park JB, Zheng YF (2004) Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Trans Ind Electron 51(3):718–726 CrossRefGoogle Scholar
  24. 24.
    Palacín J, Palleja T, Valgañón I, Pernia R, Roca J (2005) Measuring coverage performances of a floor cleaning mobile robot using a vision system. In: Proceedings of the IEEE international conference on robotics and automation, Barcelona, Spain, pp 4236–4241 Google Scholar
  25. 25.
    Palleja T, Tresanchez M, Teixido M, Palacin J (2010) Modeling floor-cleaning coverage performances of some domestic mobile robots in a reduced scenario. Robot Auton Syst 58(1):37–45 CrossRefGoogle Scholar
  26. 26.
    Russel SJ, Norvig P (2003) In: Artificial intelligence a modern approach. Pearson Education, Upper Saddle River Google Scholar
  27. 27.
    The iRobot Create Team: iRobot Create owner’s guide (2006).
  28. 28.
    Wong S (2006) Qualitative topological coverage of unknown environments by mobile robots. PhD dissertation, The University of Auckland, New Zealand Google Scholar
  29. 29.
    Yang SX, Luo C (2004) A neural network approach to complete coverage path planning. IEEE Trans Syst Man Cybern, Part B, Cybern 34(1):718–724 CrossRefGoogle Scholar
  30. 30.
    Yap P (2002) Grid-based path-finding. In: Lecture notes in artificial intelligence, vol 2338. Springer, Berlin, pp 44–55 Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Hoang Huu Viet
    • 1
  • Viet-Hung Dang
    • 2
  • Md Nasir Uddin Laskar
    • 1
  • TaeChoong Chung
    • 1
  1. 1.Department of Computer EngineeringKyung Hee UniversityGyeonggiSouth Korea
  2. 2.Research and Development CenterDuy Tan UniversityDa Nang CityVietNam

Personalised recommendations