Applied Intelligence

, Volume 39, Issue 1, pp 184–201 | Cite as

A case-based approach to heuristic planning

  • Tomás de la Rosa
  • Angel García-Olaya
  • Daniel Borrajo


Most of the great success of heuristic search as an approach to AI Planning is due to the right design of domain-independent heuristics. Although many heuristic planners perform reasonably well, the computational cost of computing the heuristic function in every search node is very high, causing the planner to scale poorly when increasing the size of the planning tasks. For tackling this problem, planners can incorporate additional domain-dependent heuristics in order to improve their performance. Learning-based planners try to automatically acquire these domain-dependent heuristics using previous solved problems. In this work, we present a case-based reasoning approach that learns abstracted state transitions that serve as domain control knowledge for improving the planning process. The recommendations from the retrieved cases are used as guidance for pruning or ordering nodes in different heuristic search algorithms applied to planning tasks. We show that the CBR guidance is appropriate for a considerable number of planning benchmarks.


Case-based reasoning Automated planning Search algorithms 



This work has been partially supported by the Spanish MEC projects PELEA: TIN2008-06701-C03-03 and PlanInteraction: TIN2011-27652-C03-02.


  1. 1.
    Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59 Google Scholar
  2. 2.
    Blum A, Furst M (1995) Fast planning through planning graph analysis. In: Mellish CS (ed) Proceedings of the 14th international joint conference on artificial intelligence, IJCAI-95, vol 2. Morgan Kaufmann, Montreal, pp 1636–1642 Google Scholar
  3. 3.
    Bonet B, Geffner H (2001) Planning as heuristic search. Artif Intell 129(1–2):5–33 MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Castillo L, Fernández-Olivares J, García-Pérez O, Palao F (2006) Bringing users and planning technology together. Experiences in siadex. In: Proceedings of the 16th international conference on automated planning and scheduling (ICAPS 2006). AAAI Press, Menlo Park Google Scholar
  5. 5.
    Coles A, Fox M, Smith A (2006) A new local search algorithm for forward-chaining planning. In: Proceedings of the 17th international conference on automated planning and scheduling (ICAPS-2007), Providence, RI, USA Google Scholar
  6. 6.
    Cox M, Muñoz-Avlia H, Bergmann R (2005) Case-based planning. Knowl Eng Rev 20(3):283–287 CrossRefGoogle Scholar
  7. 7.
    De la Rosa T, Jiménez S, Borrajo D (2008) Learning relational decision trees for guiding heuristic planning. In: Proceedings of the 18th international conference on automated planning and scheduling Google Scholar
  8. 8.
    De la Rosa T, Jiménez S, García-Durán R, Fernández F, García-Olaya A, Borrajo D (2009) Three relational learning approaches for lookahead heuristic planning. In: Working notes of ICAPS 2009 workshop on planning and learning, pp 37–44 Google Scholar
  9. 9.
    De la Rosa T, Jiménez S, Fuentetaja R, Borrajo D (2011) Scaling up heuristic planning with relational decision trees. J Artif Intell Res 40:767–813 zbMATHGoogle Scholar
  10. 10.
    Della Penna G, Magazzeni D, Mercorio F (2012) A universal planning system for hybrid domains. Appl Intell 36:932–959 CrossRefGoogle Scholar
  11. 11.
    Fox M, Long D (1998) The automatic inference of state invariants in tim. J Artif Intell Res 9:317–371 Google Scholar
  12. 12.
    Ghallab M, Nau D, Traverso P (2004) Automated planning, theory and practice. Morgan Kaufmann, San Mateo Google Scholar
  13. 13.
    Helmert M (2006) The fast downward planning system. J Artif Intell Res 26:191–246 zbMATHCrossRefGoogle Scholar
  14. 14.
    Hoffmann J (2005) Where “ignoring delete lists” works: local search topology in planning benchmarks. J Artif Intell Res 24:685–758 zbMATHGoogle Scholar
  15. 15.
    Hoffmann J, Nebel B (2001) The FF planning system: fast plan generation through heuristic search. J Artif Intell Res 14:253–302 zbMATHGoogle Scholar
  16. 16.
    Hoffmann J, Porteous J, Sebastia L (2004) Ordered landmarks in planning. J Artif Intell Res 22:215–278 MathSciNetzbMATHGoogle Scholar
  17. 17.
    Hogg C, Muñoz-Avila H, Kuter U (2008) HTN-MAKER: learning htns with minimal additional knowledge engineering required. In: Proceedings of the 20th AAAI conference. AAAI Press, Menlo Park Google Scholar
  18. 18.
    Kuzu M, Cicekli NK (2012) Dynamic planning approach to automated web service composition. Appl Intell 36:1–28 CrossRefGoogle Scholar
  19. 19.
    Martin M, Geffner H (2004) Learning generalized policies from planning examples using concept languages. Appl Intell 20:9–19 zbMATHCrossRefGoogle Scholar
  20. 20.
    McGann C, Py F, Rajan K, Ryan H, Henthorn R (2008) Adaptative control for autonomous underwater vehicles. In: Proceedings of the 23rd AAAI conference. AAAI Press, Menlo Park Google Scholar
  21. 21.
    Nayak P, Kurien J, Dorais G, Millar W, Rajan K, Kanefsky R (1999) Validating the ds-1 remote agent experiment. In: Artificial intelligence, robotics and automation in space Google Scholar
  22. 22.
    Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39:127–177 zbMATHGoogle Scholar
  23. 23.
    Serina I (2010) Kernel functions for case-based planning. Artif Intell 174:1369–1406 MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Spalazzi L (2001) A survey on case-based planning. Artif Intell Rev 16:3–36. zbMATHCrossRefGoogle Scholar
  25. 25.
    Veloso M, Carbonell J (1993) Derivational analogy in PRODIGY: automating case acquisition, storage, and utilization. Mach Learn 10(3):249–278 CrossRefGoogle Scholar
  26. 26.
    Vidal V (2004) A lookahead strategy for heuristic search planning. In: Proceedings of the fourteenth international conference on automated planning and scheduling, Whistler, British Columbia, Canada, pp 150–160 Google Scholar
  27. 27.
    Yoon S, Fern A, Givan R (2008) Learning control knowledge for forward search planning. J Mach Learn Res 9:683–718 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Tomás de la Rosa
    • 1
  • Angel García-Olaya
    • 1
  • Daniel Borrajo
    • 1
  1. 1.Departamento de InformáticaUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations