Applied Intelligence

, Volume 38, Issue 4, pp 553–565 | Cite as

Reasoning about shadows in a mobile robot environment

  • Valquiria Fenelon
  • Paulo E. Santos
  • Hannah M. Dee
  • Fabio G. Cozman
Article

Abstract

This paper describes a logic-based formalism for qualitative spatial reasoning with cast shadows (Perceptual Qualitative Relations on Shadows, or PQRS) and presents results of a mobile robot qualitative self-localisation experiment using this formalism. Shadow detection was accomplished by mapping the images from the robot’s monocular colour camera into a HSV colour space and then thresholding on the V dimension. We present results of self-localisation using two methods for obtaining the threshold automatically: in one method the images are segmented according to their grey-scale histograms, in the other, the threshold is set according to a prediction about the robot’s location, based upon a qualitative spatial reasoning theory about shadows. This theory-driven threshold search and the qualitative self-localisation procedure are the main contributions of the present research. To the best of our knowledge this is the first work that uses qualitative spatial representations both to perform robot self-localisation and to calibrate a robot’s interpretation of its perceptual input.

Keywords

Qualitative spatial reasoning Cognitive robotics Knowledge representation 

References

  1. 1.
    Balan AO, Black MJ, Haussecker H, Sigal L (2007) Shining a light on human pose: on shadows, shading and the estimation of pose and shape. In: Proc international conference on computer vision (ICCV), pp 1–8 Google Scholar
  2. 2.
    Balbiani P, Condotta JF (2002) Spatial reasoning about points in a multidimensional setting. Appl Intell 17(3):221–238 MATHCrossRefGoogle Scholar
  3. 3.
    Bennett B, Cohn AG, Wolter F, Zakharyaschev M (2002) Multi-dimensional modal logic as a framework for spatio-temporal reasoning. Appl Intell 17(3):239–251 MATHCrossRefGoogle Scholar
  4. 4.
    Cao X, Foroosh H (2007) Camera calibration and light source orientation from solar shadows. Proc Comput Vis Pattern Recogn 105(1):60–72 Google Scholar
  5. 5.
    Casati R (2004) The shadow knows: a primer on the informational structure of cast shadows. Perception 33(11):1385–1396 CrossRefGoogle Scholar
  6. 6.
    Caspi Y, Werman M (2006) Vertical parallax from moving shadows. In: Proc computer vision and pattern recognition (CVPR), New York, USA Google Scholar
  7. 7.
    Castiello U, Lusher D, Burton C, Disler P (2003) Shadows in the brain. J Cogn Neurosci 15(6):862–872 CrossRefGoogle Scholar
  8. 8.
    Cavanagh P (2005) The artist as neuroscientist. Nature 434:301–307 CrossRefGoogle Scholar
  9. 9.
    Cheah CC, Liu C, Slotine JJE (2006) Adaptive tracking control for robots with unknown kinematic and dynamic properties. Int J Robot Res 25(3):283–296 CrossRefGoogle Scholar
  10. 10.
    Cohn AG, Renz J (2008) Qualitative spatial representation and reasoning. In: Handbook of knowledge representation. Elsevier, Amsterdam, pp 551–596 CrossRefGoogle Scholar
  11. 11.
    Cucchiara R, Grana C, Neri G, Piccardi M, Prati A (2001) The sakbot system for moving object detection and tracking. In: Video-based surveillance systems: computer vision and distributed processing (Part II—detection and tracking). Kluwer Academic, Dordrecht, pp 145–158 Google Scholar
  12. 12.
    da Costa Kauffmann T (1979) The perspective of shadows: the history of the theory of shadow projection. J Warburg Courtauld Inst 38:258–287 CrossRefGoogle Scholar
  13. 13.
    Davis R, Shrobe H, Szolovits P (1993) What is a knowledge representation? AI Mag 14(1):17–33 Google Scholar
  14. 14.
    Dee H, Santos P (2011) The perception and content of cast shadows: an interdisciplinary review. Spat Cogn Comput 11(3):226–253 Google Scholar
  15. 15.
    dos Santos MV, de Brito RC, Park HH, Santos P (2009) Logic-based interpretation of geometrically observable changes occurring in dynamic scenes. Appl Intell 31(2):161–179 CrossRefGoogle Scholar
  16. 16.
    Fitzpatrick P, Torres-Jara E (2004) The power of the dark side: using cast shadows for visually-guided touching. In: Proc of the 4th IEEE/RAS international conference on humanoid robots, pp 437–449 Google Scholar
  17. 17.
    Fogliaroni P, Wallgrün JO, Clementini E, Tarquini F, Wolter D (2009) A qualitative approach to localization and navigation based on visibility information. In: COSIT’09: proceedings of the 9th international conference on spatial information theory. Springer, Berlin, pp 312–329 CrossRefGoogle Scholar
  18. 18.
    Freksa C (1991) Conceptual neighbourhood and its role in temporal and spatial reasoning. In: Decision support systems and qualitative reasoning. Elsevier, Amsterdam, pp 181–193 Google Scholar
  19. 19.
    Guesgen HW (2002) Reasoning about distance based on fuzzy sets. Appl Intell 17(3):265–270 MATHCrossRefGoogle Scholar
  20. 20.
    Hsieh JW, Hu WF, Chang CJ, Chen JS (2003) Shadow elimination for effective moving object detection by Gaussian shadow modeling. Image Vis Comput 21(6):505–516 CrossRefGoogle Scholar
  21. 21.
    Kang JG, Kim S, An, SY, Oh SY (2012) A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization. Appl Intell 36(1):242–269 CrossRefGoogle Scholar
  22. 22.
    Kunii Y, Gotoh T (2003) Evaluation of shadow range finder: SRF for planetary surface exploration. In: Proc of the IEEE international conference on robotics and automation (ICRA), pp 2573–2578 Google Scholar
  23. 23.
    Lee JS, Roh SG, Kim DW, Moon H, Choi HR (2009) In-pipe robot navigation based upon the landmark recognition system using shadow images. In: Proc of the IEEE international conference on robotics and automation (ICRA), pp 1857–1862 Google Scholar
  24. 24.
    Levitt TS, Lawton DT (1990) Qualitative navigation for mobile robots. Artif Intell 44:305–360 CrossRefGoogle Scholar
  25. 25.
    Mamassian P (2004) Impossible shadows and the shadow correspondence problem. Perception 33:1279–1290 CrossRefGoogle Scholar
  26. 26.
    Mamassian P, Goutcher R (2001) Prior knowledge on the illumination position. Cognition 81(1):B1–B9 CrossRefGoogle Scholar
  27. 27.
    Mamassian P, Knill DC, Kersten D (1998) The perception of cast shadows. Trends Cogn Sci 2(8):288–295 CrossRefGoogle Scholar
  28. 28.
    Martel-Brisson N, Zaccarin A (2007) Learning and removing cast shadows through a multidistribution approach. IEEE Trans Pattern Anal Mach Intell 29(7):1134–1146 CrossRefGoogle Scholar
  29. 29.
    Mendonça M, de Arruda LVR, Neves F Jr. (2012) Autonomous navigation system using event driven-fuzzy cognitive maps. Appl Intell 37(2):175–188 CrossRefGoogle Scholar
  30. 30.
    Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66 CrossRefGoogle Scholar
  31. 31.
    Porikli F, Thornton J (2005) Shadow flow: a recursive method to learn moving cast shadows. In: Proc international conference on computer vision (ICCV) Google Scholar
  32. 32.
    Prati A, Mikic I, Trivedi M, Cucchiara R (2003) Detecting moving shadows: algorithms and evaluation. IEEE Trans Pattern Anal Mach Intell 25(7):918–923 CrossRefGoogle Scholar
  33. 33.
    Randell D, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In: International conference on knowledge representation and reasoning, Cambridge, US, pp 165–176 Google Scholar
  34. 34.
    Randell D, Witkowski M, Shanahan M (2001) From images to bodies: modeling and exploiting spatial occlusion and motion parallax. In: International joint conference on artificial intelligence, Seattle, US, pp 57–63 Google Scholar
  35. 35.
    Renno JRR, Orwell J, Thirde DJ, Jones GA (2004) Shadow classification and evaluation for soccer player detection. In: Proc British machine vision conference, Kingston upon Thames, UK, pp 839–848 Google Scholar
  36. 36.
    Salvador E, Cavallaro A, Ebrahimi T (2004) Cast shadow segmentation using invariant color features. Comput Vis Image Underst 95(2):238–259 CrossRefGoogle Scholar
  37. 37.
    Santos P, Dee H, Fenelon V (2009) Qualitative robot localisation using information from cast shadows. In: Proc of the IEEE international conference on robotics and automation (ICRA), pp 220–225 Google Scholar
  38. 38.
    Sapena O, Onaindäa E (2008) Planning in highly dynamic environments: an anytime approach for planning under time constraints. Appl Intell 29(1):90–109 CrossRefGoogle Scholar
  39. 39.
    Schlieder C (1993) Representing visible locations for qualitative navigation. In: Qualitative reasoning and decision technologies, pp 523–532. CIMNE Google Scholar
  40. 40.
    Stauder J, Mech R, Ostermann J (1999) Detection of moving cast shadows for object segmentation. IEEE Trans Multimed 1(1):65–76 CrossRefGoogle Scholar
  41. 41.
    Tompkins P, Stentz A, Whittaker WL (2001) Automated surface mission planning considering terrain, shadows, resources and time. In: Proceedings of the 6th international symposium on artificial intelligence, robotics and automation in space (i-SAIRAS’01), Montreal, Canada Google Scholar
  42. 42.
    Troccoli A, Allen PK (2004) A shadow-based method for model registration. In: IEEE computer vision and pattern recognition workshop (CVPRM) Google Scholar
  43. 43.
    van Benthem J (1991) The logic of time: a model theoretic investigation into the varieties of temporal ontology and temporal discourse. Kluwer Academic, Dordrecht MATHGoogle Scholar
  44. 44.
    Wagner T, Huebner K (2004) Egocentric qualitative spatial knowledge representation for physical robots. In: 8th international workshop on RoboCup 2004 (Robot World Cup Soccer Games and Conferences). Lecture notes in artificial intelligence. Springer, Berlin, pp 134–149 Google Scholar
  45. 45.
    Wang Y, Loe KF, Tan T, Wu JK (2005) A dynamic hidden Markov random field model for foreground and shadow segmentation. In: Proc IEEE workshop on applications of computer vision Google Scholar
  46. 46.
    Zimmermann K, Freksa C (1996) Qualitative spatial reasoning using orientation, distance, and path knowledge. Appl Intell 6(1):49–58 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Valquiria Fenelon
    • 1
  • Paulo E. Santos
    • 2
  • Hannah M. Dee
    • 3
  • Fabio G. Cozman
    • 1
  1. 1.Escola PolitécnicaUniversidade de S. PauloSão PauloBrazil
  2. 2.Centro Universitário da FEIS. PauloBrazil
  3. 3.Department of Computer ScienceAberystwyth UniversityAberystwythUK

Personalised recommendations