Advertisement

Applied Intelligence

, Volume 37, Issue 3, pp 431–445 | Cite as

The six elements to block-building approaches for the single container loading problem

  • Wenbin ZhuEmail author
  • Wee-Chong Oon
  • Andrew Lim
  • Yujian Weng
Article

Abstract

In the Single Container Loading Problem, the aim is to pack three-dimensional boxes into a three-dimensional container so as to maximize the volume utilization of the container. Many recently successful techniques for this problem share a similar structure involving the use of blocks of boxes. However, each technique comprises several seemingly disparate parts, which makes it difficult to analyze these techniques in a systematic manner. By dissecting block building approaches into 6 common elements, we found that existing techniques only differ in the strategies used for each element. This allows us to better understand these algorithms and identify their effective strategies. We then combine those effective strategies into a greedy heuristic for the SCLP problem. Computational experiments on 1,600 commonly used test cases show that our approach outperforms all other existing single-threaded approaches, and is comparable to the best parallel approach to the SCLP. It demonstrates the usefulness of our component-based analysis in the design of block building algorithms.

Keywords

Greedy heuristic 3D packing Tree search Metaheuristics Block building 

References

  1. 1.
    Bischoff EE (2006) Three-dimensional packing of items with limited load bearing strength. Eur J Oper Res 168(3):952–966. doi: 10.1016/j.ejor.2004.04.037 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bischoff EE, Ratcliff MSW (1995) Issues in the development of approaches to container loading. OMEGA Int J Manag Sci 23(4):377–390. doi: 10.1016/0305-0483(95)00015-G CrossRefGoogle Scholar
  3. 3.
    Bortfeldt A, Gehring H (2001) A hybrid genetic algorithm for the container loading problem. Eur J Oper Res 131(1):143–161. doi: 10.1016/S0377-2217(00)00055-2 zbMATHCrossRefGoogle Scholar
  4. 4.
    Bortfeldt A, Gehring H, Mack D (2003) A parallel tabu search algorithm for solving the container loading problem. Parallel Comput 29(5):641–662. doi: 10.1016/S0167-8191(03)00047-4 CrossRefGoogle Scholar
  5. 5.
    Che CH, Huang W, Lim A, Zhu W (2011) The multiple container loading cost minimization problem. Eur J Oper Res 214(3):501–511. doi: 10.1016/j.ejor.2011.04.017, zbMATHCrossRefGoogle Scholar
  6. 6.
    Chien CF, Wu WT (1998) A recursive computational procedure for container loading. Comput Ind Eng 35(1–2):319–322. doi: 10.1016/S0360-8352(98)00084-9 CrossRefGoogle Scholar
  7. 7.
    Davies AP, Bischoff EE (1999) Weight distribution considerations in container loading. Eur J Oper Res 114(3):509–527. doi: 10.1016/S0377-2217(98)00139-8 zbMATHCrossRefGoogle Scholar
  8. 8.
    Dyckhoff H, Finke U (1992) Cutting and packing in production and distribution: a typology and bibliography, 1st edn. Contributions to management science. Physica-Verlag, Heidelberg CrossRefGoogle Scholar
  9. 9.
    Eley M (2002) Solving container loading problems by block arrangement. Eur J Oper Res 141(2):393–409. doi: 10.1016/S0377-2217(02)00133-9 MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fanslau T, Bortfeldt A (2010) A tree search algorithm for solving the container loading problem. INFORMS J Comput 22(2):222–235. doi: 10.1287/ijoc.1090.0338 MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Fekete SP, Schepers J (2004) A combinatorial characterization of higher-dimensional orthogonal packing. Math Oper Res 29(2):353–368. doi: 10.1287/moor.1030.0079 MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Fekete SP, Schepers J, van der Veen JC (2007) An exact algorithm for higher-dimensional orthogonal packing. Oper Res 55(3):569–587. doi: 10.1287/opre.1060.0369 MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Gehring H, Bortfeldt A (1997) A genetic algorithm for solving the container loading problem. Int Trans Oper Res 4(5–6):401–418. doi: 10.1111/j.1475-3995.1997.tb00095.x zbMATHCrossRefGoogle Scholar
  14. 14.
    Gonçalves JF, Resende MGC (2012) A parallel multi-population biased random-key genetic algorithm for a container loading problem. Comput Oper Res 39(2):179–190. doi: 10.1016/j.cor.2011.03.009 MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hanlon P (1982) Counting interval graphs. Trans Am Math Soc 272(2):383–426. doi: 10.2307/1998705 MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    He K, Huang W (2011) An efficient placement heuristic for three-dimensional rectangular packing. Comput Oper Res 38(1):227–233. doi: 10.1016/j.cor.2010.04.015 zbMATHCrossRefGoogle Scholar
  17. 17.
    Huang W, He K (2009) A caving degree approach for the single container loading problem. Eur J Oper Res 196(1):93–101. doi: 10.1016/j.ejor.2008.02.024 MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Huang W, Chen D, Xu R (2007) A new heuristic algorithm for rectangle packing. Comput Oper Res 34:3270–3280 MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Lim A, Zhang X (2005) The container loading problem. In: SAC’05: Proceedings of the 2005 ACM symposium on applied computing. ACM, New York, pp 913–917. doi: 10.1145/1066677.1066888 CrossRefGoogle Scholar
  20. 20.
    Lim A, Rodrigues B, Wang Y (2003) A multi-faced buildup algorithm for three-dimensional packing problems. OMEGA Int J Manag Sci 31(6):471–481. doi: 10.1016/j.omega.2003.08.004 CrossRefGoogle Scholar
  21. 21.
    Lim A, Rodrigues B, Yang Y (2005) 3-D container packing heuristics. Appl Intell 22(2):125–134. doi: 10.1007/s10489-005-5601-0 zbMATHCrossRefGoogle Scholar
  22. 22.
    Lins L, Lins S, Morabito R (2002) An n-tet graph approach for non-guillotine packings of n-dimensional boxes into an n-container. Eur J Oper Res 141(2):421–439. doi: 10.1016/S0377-2217(02)00135-2 MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Mack D, Bortfeldt A, Gehring H (2004) A parallel hybrid local search algorithm for the container loading problem. Int Trans Oper Res 11(5):511–533. doi: 10.1111/j.1475-3995.2004.00474.x zbMATHCrossRefGoogle Scholar
  24. 24.
    Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley Interscience series in discrete mathematics and optimization. Wiley, Chichester, zbMATHGoogle Scholar
  25. 25.
    Moura A, Oliveira JF (2005) A GRASP approach to the container-loading problem. IEEE Intell Syst 20(4):50–57. doi: 10.1109/MIS.2005.57 CrossRefGoogle Scholar
  26. 26.
    Parreño F, Alvarez-Valdes R, Tamarit JM, Oliveira JF (2008) A maximal-space algorithm for the container loading problem. INFORMS J Comput 20(3):412–422. doi: 10.1287/ijoc.1070.0254 MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Parreño F, Alvarez-Valdes R, Oliveira JE, Tamarit JM (2010) Neighborhood structures for the container loading problem: a VNS implementation. J Heuristics 16(1):1–22. doi: 10.1007/s10732-008-9081-3 zbMATHCrossRefGoogle Scholar
  28. 28.
    Pisinger D (2002) Heuristics for the container loading problem. Eur J Oper Res 141(2):382–392. doi: 10.1016/S0377-2217(02)00132-7 MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Ratcliff MSW, Bischoff EE (1998) Allowing for weight considerations in container loading. OR Spektrum 20(1):65–71. doi: 10.1007/BF01545534 zbMATHCrossRefGoogle Scholar
  30. 30.
    Terno J, Scheithauer G, SommerweißU, Riehme J (2000) An efficient approach for the multi-pallet loading problem. Eur J Oper Res 123(2):372–381. doi: 10.1016/S0377-2217(99)00263-5 zbMATHCrossRefGoogle Scholar
  31. 31.
    Wäscher G, Haußner H, Schumann H (2007) An improved typology of cutting and packing problems. Eur J Oper Res 183(3):1109–1130. doi: 10.1016/j.ejor.2005.12.047 zbMATHCrossRefGoogle Scholar
  32. 32.
    Wu Y (2002) An effective quasi-human based heuristic for solving the rectangle packing problem. Eur J Oper Res 141(2):341–358. doi: 10.1016/S0377-2217(02)00129-7 zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wenbin Zhu
    • 1
    Email author
  • Wee-Chong Oon
    • 2
  • Andrew Lim
    • 2
  • Yujian Weng
    • 3
  1. 1.Department of Computer Science and EngineeringHong Kong University of Science and TechnologyKowloonHong Kong
  2. 2.Department of Management SciencesCity University of Hong KongKowloon TongHong Kong
  3. 3.Department of Computer Science, School of Information Science and TechnologyZhong Shan (Sun Yat-Sen) UniversityGuangzhouP.R. China

Personalised recommendations