Advertisement

Applied Intelligence

, Volume 37, Issue 2, pp 207–222 | Cite as

Cooperative driving: an ant colony system for autonomous intersection management

  • Jia WuEmail author
  • Abdeljalil Abbas-Turki
  • Abdellah El Moudni
Article

Abstract

Autonomous intersection management (AIM) is an innovative concept for directing vehicles through the intersections. AIM assumes that the vehicles negotiate the right-of-way. This assumption makes the problem of the intersection management significantly different from the usually studied ones such as the optimization of the cycle time, splits, and offsets. The main difficulty is to define a strategy that improves the traffic efficiency. Indeed, due to the fact that each vehicle is considered individually, AIM faces a combinatorial optimization problem that needs quick and efficient solutions for a real time application. This paper proposes a strategy that evacuates vehicles as soon as possible for each sequence of vehicle arrivals. The dynamic programming (DP) that gives the optimal solution is shown to be greedy. A combinatorial explosion is observed if the number of lanes rises. After evaluating the time complexity of the DP, the paper proposes an ant colony system (ACS) to solve the control problem for large number of vehicles and lanes. The complete investigation shows that the proposed ACS algorithm is robust and efficient. Experimental results obtained by the simulation of different traffic scenarios show that the AIM based on ACS outperforms the traditional traffic lights and other recent traffic control strategies.

Keywords

Ant colony system Cooperative driving Autonomous intersection management Wireless communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(MPG 2.24 MB)

(MPG 3.65 MB)

References

  1. 1.
    Sakaguchi T, Uno A, Kato S, Tsugawa S (2000) Cooperative driving of automated vehicles with inter-vehicle communications. In: Proceedings of the IEEE intelligent vehicles symposium, pp 516–521 Google Scholar
  2. 2.
    Uno A, Sakaguchi T, Tsugawa S (1999) A merging control algorithm based on inter-vehicle communication. In: Proceedings 1999 IEEE/IEEJ/JSAI international conference on intelligent transportation systems, pp 783–787 Google Scholar
  3. 3.
    Tsugawa S (2002) Inter-vehicle communications and their applications to intelligent vehicles: an overview. In: IEEE intelligent vehicle symposium 2002, vol 2, pp 564–569 Google Scholar
  4. 4.
    Gehring O, Fritz H (1997) Practical results of a longitudinal control concept for truck platooning with vehicle to vehicle communication. In: IEEE conference on intelligent transportation system 1997, pp 117–122 CrossRefGoogle Scholar
  5. 5.
    Shladover SE, Desoer CA, Hedrick JK, Tomizuka M, Walrand J, Zhang WB, McMahon DH, Peng H, Sheikholeslam S, McKeown N (1991) Automated vehicle control developments in the PATH program. IEEE Trans Veh Technol 40(1):114–130 CrossRefGoogle Scholar
  6. 6.
    Arora S, Raina AK, Mittal AK (2000) Collision avoidance among AGVs at junctions. In: Proceedings of the IEEE intelligent vehicles symposium 2000, pp 585–589 Google Scholar
  7. 7.
    Li L, Fei-Yue W (2006) Cooperative driving at blind crossings using intervehicle communication. IEEE Trans Veh Technol 55(6):1712–1724 CrossRefGoogle Scholar
  8. 8.
    Fang FC, Elefteriadou L (2006) Development of an optimization methodology for adaptive traffic signal control at diamond interchanges. J Transp Eng 132(8):629–637 CrossRefGoogle Scholar
  9. 9.
    Gradinescu V, Gorgorin C, Diaconescu R, Cristea V, Iftode L (2007) Adaptive traffic lights using car-to-car communication. In: IEEE 65th vehicular technology conference, 2007, Spring, pp 21–25 CrossRefGoogle Scholar
  10. 10.
    Wunderlich R, Cuibi L, Elhanany I, Urbanik T (2008) A novel signal-scheduling algorithm with quality-of-service provisioning for an isolated intersection. IEEE Trans Intell Transp Syst 9(3):536–547 CrossRefGoogle Scholar
  11. 11.
    Dresner K, Stone P (2006) Traffic intersections of the future. In: The twenty-first national conference on artificial intelligence. NECTARTrack (AAAI 06), pp 1593–1596 Google Scholar
  12. 12.
    Neuendorf N, Bruns T (2004) The vehicle platoon controller in the decentralised, autonomous intersection management of vehicles. In: Proceedings of the IEEE international conference on mechatronics 2004, pp 375–380 CrossRefGoogle Scholar
  13. 13.
    Naumann R, Rasche R, Tacken J, Tahedi C (1997) Validation and simulation of a decentralized intersection collision avoidance algorithm. In: IEEE conference on intelligent transportation system 1997, pp 818–823 CrossRefGoogle Scholar
  14. 14.
    Lachner R (1997) Collision avoidance as a differential game: real-time approximation of optimal strategies using higher derivatives of the value function. In: IEEE international conference on systems, man and cybernetics 1997. Computational cybernetics and simulation, vol 3, pp 2308–2313 Google Scholar
  15. 15.
    Hunt PB (1982) The SCOOT on-line traffic signal optimisatoin technique. Traffic Eng Control 23:190–192 Google Scholar
  16. 16.
    Gartner N (1983) OPAC: a demand-responsive strategy for traffic signal control. Transp Res Rec 906:75–81 Google Scholar
  17. 17.
    Farges JL, Henry JJ, Tufal J (1983) The PRODYN real-time traffic algorithm. In: The 4th IFAC symposium on transportation systems, pp 307–312 Google Scholar
  18. 18.
    Dresner K, Stone P (2007) Learning policy selection for autonomous intersection management. In: The AAMAS 2007 workshop on adaptive and learning agents (ALAg 2007), pp 34–39 Google Scholar
  19. 19.
    Wu J, Abbas-Turki A, Correia A, El Moudni A (2007) Discrete intersection signal control. In: IEEE international conference on service operations and logistics and informatics 2007, pp 1–6 CrossRefGoogle Scholar
  20. 20.
    Yan F, Dridi M, El Moudni A (2009) A branch and bound algorithm for new traffic signal control system of an isolated intersection. In: International conference on computers & industrial engineering 2009, pp 999–1004 CrossRefGoogle Scholar
  21. 21.
    Dresner K, Stone P (2004) Multiagent traffic management: a reservation-based intersection control mechanism. In: Proceedings of the third international joint conference on autonomous agents and multiagent systems 2004, pp 530–537 Google Scholar
  22. 22.
    Quinlan M, Tsz-Chiu A, Zhu J, Stiurca N, Stone P (2010) Bringing simulation to life: a mixed reality autonomous intersection. In: IEEE/RSJ international conference on intelligent robots and systems (IROS) 2010, pp 6083–6088 CrossRefGoogle Scholar
  23. 23.
    Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66 CrossRefGoogle Scholar
  24. 24.
    Grünewald M, Rust C, Witkowski U (2006) Using mini robots for prototyping intersection management of vehicles. In: The 3rd international symposium on autonomous minirobots for research and edutainment (AMIRE 2005), pp 287–292 CrossRefGoogle Scholar
  25. 25.
    FHWA (2005) Traffic control systems handbook. Dunn engineering asociates and siemens intelligent transportation systems Google Scholar
  26. 26.
    NHTSA (2005) Vehicle safety communications project task 3 final report—identify intelligent vehicle safety applications enabled by DSRC. US Department of Transportation: National Highway Traffic Safety Administration, Washington, DC Google Scholar
  27. 27.
    Kutz M (2004) Handbook of transportation engineering. McGraw-Hill, New York Google Scholar
  28. 28.
    Chen X, Li L, Zhang Y (2010) A Markov model for headway/spacing distribution of road traffic. IEEE Trans Intell Transp Syst 11(4):773–785 CrossRefGoogle Scholar
  29. 29.
    Bertolazzi E, Biral F, Da Lio M, Saroldi A, Tango F (2009) Supporting drivers in keeping safe speed and safe distance: the SASPENCE subproject within the European framework programme 6 integrating project PReVENT. IEEE Trans Intell Transp Syst 11(3):525–538 CrossRefGoogle Scholar
  30. 30.
    Cohen S (1993) Ingénierie du trafic routier. Eléments de théorie du trafic et applications. Seconde edn. Presses de l’Ecole National des Ponts et Chaussées Google Scholar
  31. 31.
    Diakaki P, Kotsialos D, Wang Y (2003) Review of road traffic control strategies. Proc IEEE 91(12):2041–2042 CrossRefGoogle Scholar
  32. 32.
    Wu J, Abbas-Turki A, El Moudni A (2009) Intersection traffic control by a novel scheduling model. In: IEEE/INFORMS international conference on service operations, logistics and informatics 2009, pp 329–334 CrossRefGoogle Scholar
  33. 33.
    Dorigo M, Stutzle T (2004) Ant colony optimization. MIT Press, Cambridge zbMATHCrossRefGoogle Scholar
  34. 34.
    Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344(2–3):243–278 MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern, Part B, Cybern 26(1):29–41 CrossRefGoogle Scholar
  36. 36.
    Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Tech Report 91-016. Laboratorio di Calcolatori, Dipartimento di Elettronica, Politecnico di Milano, Milano, Italy Google Scholar
  37. 37.
    Maniezzo V (1999) Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. INFORMS J Comput 11(4):358–369 MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Maniezzo V, Colorni A (1999) The ant system applied to the quadratic assignment problem. IEEE Trans Knowl Data Eng 11(5):769–778 CrossRefGoogle Scholar
  39. 39.
    Costa D, Hertz A (1997) Ants can colour graphs. J Oper Res Soc 48(3):295–305 zbMATHGoogle Scholar
  40. 40.
    Blum C, Sampels M (2004) An ant colony optimization algorithm for shop scheduling problems. J Math Model Algorithms 3(3):285–308 MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Gagné C, Price WL, Gravel M (2002) Comparing an ACO algorithm with other heuristics for the single machine scheduling problem with sequence-dependent setup times. J Oper Res Soc 53(8):895–906 zbMATHCrossRefGoogle Scholar
  42. 42.
    Merkle D, Middendorf M, Schmeck H (2002) Ant colony optimization for resource-constrained project scheduling. IEEE Trans Evol Comput 6(4):333–346 CrossRefGoogle Scholar
  43. 43.
    Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl Intell 18(1):105–111 zbMATHCrossRefGoogle Scholar
  44. 44.
    Zhang N, Feng Z-R, Ke L-j (2010) Guidance-solution based ant colony optimization for satellite control resource scheduling problem. Appl Intell 1–9. doi: 10.1007/s10489-010-0234-3
  45. 45.
    Bullnheimer B, Hartl RF, Strauss C (1999) An improved ant system algorithm for the vehicle routing problem. Ann Oper Res 89(0):319–328 MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Lee C-Y, Lee Z-J, Lin S-W, Ying K-C (2010) An enhanced ant colony optimization (EACO) applied to capacitated vehicle routing problem. Appl Intell 32(1):88–95 CrossRefGoogle Scholar
  47. 47.
    Reimann M, Doerner K, Hartl RF (2004) D-Ants: savings based ants divide and conquer the vehicle routing problem. Comput Oper Res 31(4):563–591 zbMATHCrossRefGoogle Scholar
  48. 48.
    Thomas HC, Charles EL, Ronald LR, Clifford S (2009) Introduction to algorithms, 3rd edn. MIT Press, Cambridge zbMATHGoogle Scholar
  49. 49.
    May A (1990) Traffic flow fundamentals. Prentice Hall, Englewood Cliffs Google Scholar
  50. 50.
    Webster FV (1958) Road research technical paper. Road Research Laboratory, London, UK Google Scholar
  51. 51.
    Mannering FL, Kilareski WP, Washburn SS (2004) Principles of highway engineering and traffic analysis, 3rd edn. Wiley, Hoboken Google Scholar
  52. 52.
    Barney GC (2003) Elevator traffic handbook: theory and practice. Taylor & Francis, London Google Scholar
  53. 53.
    Gipps PG (1981) A behavioural car-following model for computer simulation. Transp Res, Part B, Methodol 15(2):105–111 CrossRefGoogle Scholar
  54. 54.
    Gipps PG (1986) Multsim: a model for simulating vehicular traffic on multi-lane arterial roads. Math Comput Simul 28(4):291–295 CrossRefGoogle Scholar
  55. 55.
    Panwai S, Dia H (2005) Comparative evaluation of microscopic car-following behavior. IEEE Trans Intell Transp Syst 6(3):314–325 CrossRefGoogle Scholar
  56. 56.
    Little JDC (1961) A proof for the queuing formula: L=λW. Oper Res 9(3):383–387 MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jia Wu
    • 1
    Email author
  • Abdeljalil Abbas-Turki
    • 1
  • Abdellah El Moudni
    • 1
  1. 1.Laboratoire Systèmes et TransportsUniversité de Technologie de Belfort-MontbéliardBelfort cedexFrance

Personalised recommendations