Applied Intelligence

, Volume 36, Issue 1, pp 136–147 | Cite as

Portable autonomous walk calibration for 4-legged robots

  • Boyan Bonev
  • Miguel Cazorla
  • Francisco Martín
  • Vicente Matellán
Article

Abstract

In the present paper we describe an efficient and portable optimization method for calibrating the walk parameters of a quadruped robot, and its contribution for the robot control and localization. The locomotion of a legged robot presents not only the problem of maximizing the speed, but also the problem of obtaining a precise speed response, and achieving an acceptable odometry information. In this study we use a simulated annealing algorithm for calibrating different parametric sets for different speed ranges, with the goal of avoiding discontinuities. The results are applied to the robot AIBO in the RoboCup domain. Moreover, we outline the relevance of calibration to the control, showing the improvement obtained in odometry and, as a consequence, in robot localization.

Keywords

Legged locomotion Walk parameters estimation Autonomous odometry calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bonev B, Cazorla M, Martínez H (2005) Walk calibration in a four-legged robot. In: Proceedings of CLAWAR (climbing and walking robots). London (UK) Google Scholar
  2. 2.
    Chalup SK, Murch CL, Quinlan MJ (2007) Machine learning with AIBO robots in the four-legged league of RoboCup. IEEE Trans Syst Man Cybern 37(3) Google Scholar
  3. 3.
    Chen W (2005) Odometry calibration and gait optimisation. PhD Thesis. The University of New South Wales Google Scholar
  4. 4.
    Chernova S, Veloso M (2004) An evolutionary approach to gait learning for four-legged robots. In: Proceedings of IROS’04, Sendai, Japan Google Scholar
  5. 5.
    Düffert U, Hoffmann J (2006) Reliable and precise gait modeling for a quadruped robot. In: Proc 9th international workshop on RoboCup 2005 (robot world cup soccer games and conferences). LNAI. Springer, Berlin Google Scholar
  6. 6.
    Hafmar H, Lundin J (2002) Quadruped locomotion for football robots. Master Thesis, Chalmers University of Technology, Goteborg, Sweden Google Scholar
  7. 7.
    Hanshar F, Ombuki-Berman B (2007) Dynamic vehicle routing using genetic algorithms. Appl Intell 27(1):8999 CrossRefGoogle Scholar
  8. 8.
    Hebbel M, Nistico W, Fisseler D (2007) Learning in a high dimensional space: fast omnidirectional quadrupedal locomotion. In: RoboCup 2006: Robot soccer world cup X. LNAI, vol 4434. Springer, Berlin, pp 314–321 CrossRefGoogle Scholar
  9. 9.
    Hengst B, Ibbotson B, Pham P, Sammut C (2002) Omnidirectional locomotion for quadruped robots. In: Proceedings of RoboCup 2001. Springer, Berlin Google Scholar
  10. 10.
    Kim MS, Uther W (2003) Automatic gait optimisation for quadruped robots. In: Australasian conference on robotics and automation, Brisbane Google Scholar
  11. 11.
    Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 4598(13):671–680 CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kohl N, Stone P (2004) Machine learning for fast quadrupedal locomotion. In: The nineteenth national conference on artificial intelligence Google Scholar
  13. 13.
    Laumanns M, Laumanns N (2005) Evolutionary multiobjective design in automotive development. Appl Intell 23(1):5570 CrossRefGoogle Scholar
  14. 14.
    Merkle D, Middendorf M (2003) Ant colony optimization with global pheromone evaluation for scheduling a single machine. Appl Intell 18(1):105111 CrossRefGoogle Scholar
  15. 15.
    RoboCup website http://www.robocup.org
  16. 16.
    Röfer T (2005) Evolutionary gait-optimization using a fitness function based on proprioception. In: Proc RoboCup 2004: Robot world cup VIII. Lecture notes in artificial intelligence, vol 3276. Springer, Berlin, pp 310–322 CrossRefGoogle Scholar
  17. 17.
    Saggar M, D’Silva T, Kohl N, Stone P (2007) Autonomous learning of stable quadruped locomotion. In: Lecture notes in artificial intelligence. Springer, Berlin, pp 98–109 Google Scholar
  18. 18.
    Sony AIBO ERS7 robot website http://www.aibo.com/
  19. 19.
    Team Chaos website http://www.teamchaos.es
  20. 20.
    Wasik Z, Saffiotti A (2002) Robust color segmentation for the RoboCup domain. In: Proc of IEEE int conf on pattern recognition (ICPR) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Boyan Bonev
    • 1
  • Miguel Cazorla
    • 1
  • Francisco Martín
    • 2
  • Vicente Matellán
    • 3
  1. 1.Dpto. de Ciencia de la Computación e Inteligencia ArtificialUniversidad de AlicanteAlicanteSpain
  2. 2.Dpto. de Ingeniería Temática y Tecnología ElectrónicaUniversidad Rey Juan CarlosMadridSpain
  3. 3.Dpto. de Ingenierías Mecánica, Informáticaa y AeroespacialUniversidad de LeónLeónSpain

Personalised recommendations