Advertisement

Applied Intelligence

, Volume 36, Issue 1, pp 108–118 | Cite as

Mining bridging rules between conceptual clusters

  • Shichao ZhangEmail author
  • Feng Chen
  • Xindong Wu
  • Chengqi Zhang
  • Ruili Wang
Article

Abstract

Bridging rules take the antecedent and action from different conceptual clusters. They are distinguished from association rules (frequent itemsets) because (1) they can be generated by the infrequent itemsets that are pruned in association rule mining, and (2) they are measured by their importance including the distance between two conceptual clusters, whereas frequent itemsets are measured only by their support. In this paper, we first design two algorithms for mining bridging rules between clusters, and then propose two non-linear metrics to measure their interestingness. We evaluate these algorithms experimentally and demonstrate that our approach is promising.

Keywords

Bridging rule Clustering Weighting Association rule Entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Han J, Kamber M (2000) Data mining: concepts and techniques. Morgan Kaufmann, San Mateo Google Scholar
  2. 2.
    Suzuki E (1997) Autonomous discovery of reliable exception rules. In: Proceedings of KDD97, pp 259–262 Google Scholar
  3. 3.
    Suzuki E, Shimura M (1996) Exceptional knowledge discovery in databases based on information theory. In: Proceedings of KDD96, pp 275–278 Google Scholar
  4. 4.
    Hussain F, Liu H, Suzuki E, Lu H (2000) Exception rule mining with a relative interestiness measure. In: Proceedings of PAKDD00, pp 86–97 Google Scholar
  5. 5.
    Hwang S, Ho S, Tang J (1999) Mining exception instances to facilitate workflow exception handling. In: Proceedings of DASFAA99, pp 45–52 Google Scholar
  6. 6.
    Liu H, Lu H, Feng L, Hussain F (1999) Efficient search of reliable exceptions. In: Proceedings of PAKDD99, pp 194–204 Google Scholar
  7. 7.
    Padmanabhan B, Tuzhilin A (1998) A belief-driven method for discovering unexpected patterns. In: Proceedings of ACM SIGKDD98, pp 94–100 Google Scholar
  8. 8.
    Padmanabhan B, Tuzhilin A (2000) Small is beautiful: discovering the minimal set of unexpected patterns. In: Proceedings of ACM SIGKDD00, pp 54–63 Google Scholar
  9. 9.
    Perner P (2002) Data mining on multimedia data, vol 2558. Springer, Berlin, Heidelberg, New York. ISBN: 3-540-00317-7 zbMATHGoogle Scholar
  10. 10.
    Wu X, Zhang C, Zhang S (2002) Mining both positive and negative association rules. In: ICML02, Sydney, Australia, pp 658–665 Google Scholar
  11. 11.
    Barnett V, Lewis T (1994) Outliers in statistical data. Wiley, New York zbMATHGoogle Scholar
  12. 12.
    Edwin M, Raymond T (1998) Algorithms for mining distance-based outlier in large datasets. In: Proceedings of the 24th international conference on very large databases, pp 392–403 Google Scholar
  13. 13.
    Arning A, Agrawal R, Raghavan P (1996) A linear method for deviation detection in large databases. In: Proc 1996 int conf knowledge discovery and data mining, Portland, Oregon, August 1996, pp 164–169 Google Scholar
  14. 14.
    Johnson T, Kwok I, Ng RT (1998) Fast computation of 2-dimensional depth contours. In: Proc KDD-98, pp 224–228 Google Scholar
  15. 15.
    Breunig MM, Kriegel H-P, Ng RT et al. (2000) Identifying density-based local outliers. In: Proc ACM int conf on management of data, Daller, TX Google Scholar
  16. 16.
    Sarawagi S, Agrawal R, Megiddo N (1998) Discovery riven exploration of OLAP data cubes. In: Proc sixth int conf on extending database technology, Valencia, Spain, March 1998 Google Scholar
  17. 17.
    Liu B, Hsu W, Han H, Xia Y (2000) Mining changes for real-life applications. In: DaWaK00, pp 337–346 Google Scholar
  18. 18.
    Liu B, Hsu W, Mun L, Lee H (1999) Finding interesting patterns using user expectations. IEEE Trans Knowl Data Eng 11(6):817–832 CrossRefGoogle Scholar
  19. 19.
    Karypis G, Han E, Kumar V (1999) CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. In: IEEE computer, pp 68–75 Google Scholar
  20. 20.
    Ke Y (2006) Mining quantitative correlated patterns using an information-theoretic approach. In: KDD-06, pp 227–236 Google Scholar
  21. 21.
    Karypis G, Aggarwal R, Kumar V, Shekhar S (1997) Multilevel hypergraph partitioning: applications. In: VLSI domain 34th design automation conference, Anaheim, California Google Scholar
  22. 22.
    Bay SD, Pazzani MJ (2001) Detecting group differences: mining contrast sets. Data Min Knowl Discov 5(3):213–246 zbMATHCrossRefGoogle Scholar
  23. 23.
    Eppstein D, Paterson M, Yao F (1997) On nearest-neighbor graphs. Discrete Comput Geom 17:263–282 zbMATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Ramaswamy S, Rastogi R, Shim K (2000) Efficient algorithms for mining outliers from large database sets. In: Proceedings of ACM SIGMOD-00, pp 427–438 Google Scholar
  25. 25.
    Zhang S, Zhang C (2002) Anytime mining for multiuser applications. IEEE Trans Syst, Man Cybern (Part A) 32(4):515–521 CrossRefGoogle Scholar
  26. 26.
    Wu X, Kumar V, Quinlan R, Ghosh J, Yang Q, Motoda H, McLachlan G, Ng A, Liu B, Yu P, Zhou Z, Steinbach M, Hand D, Steinberg D (2008) Top 10 algorithms in data mining. Knowl Inf Syst 14(1):1–37 CrossRefGoogle Scholar
  27. 27.
    Schmidt J, Hapfelmeier A, Mueller M, Perneczky R, Kurz A, Drzezga A, Kramer S (2010) Interpreting PET scans by structured patient data: a data mining case study in dementia research. Knowl Inf Syst 24(1):149–170 CrossRefGoogle Scholar
  28. 28.
    Rasheed F, Alhajj R (2010) STNR: A suffix tree based noise resilient algorithm for periodicity detection in time series databases. Appl Intell 32(3):364–377 CrossRefGoogle Scholar
  29. 29.
    Wallenta C, Kim J, Bentley P, Hailes S (2010) Detecting interest cache poisoning in sensor networks using an artificial immune algorithm. Appl Intell 32(1):1–26 CrossRefGoogle Scholar
  30. 30.
    Hamalainen W (2010) StatApriori: an efficient algorithm for searching statistically significant association rules. Knowl Inf Syst 23(3):373–399 MathSciNetCrossRefGoogle Scholar
  31. 31.
    Boley Mario, Grosskreutz Henrik (2009) Approximating the number of frequent sets in dense data. Knowl Inf Syst 21(1):65–89 CrossRefGoogle Scholar
  32. 32.
    Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2009) Mining frequent arrangements of temporal intervals. Know Inf Syst 22(2):133–171 CrossRefGoogle Scholar
  33. 33.
    Brdiczka O et al (2009) Detecting small group activities from multimodal observations. Appl Intell 30(1):47–57 (2009) CrossRefGoogle Scholar
  34. 34.
    Kyriacou E et al (2009) Classification of atherosclerotic carotid plaques using morphological analysis on ultrasound images. Appl Intell 30(1):3–23 (2009) CrossRefGoogle Scholar
  35. 35.
    Adnan M, Alhajj R (2009) DRFP-tree: disk-resident frequent pattern tree. Appl Intell 30(2):84–97 (2009) CrossRefGoogle Scholar
  36. 36.
    Iglesias A et al (2009) Learning teaching strategies in an adaptive and intelligent educational system through reinforcement learning. Appl Intell 31(1):89–106 (2009) CrossRefGoogle Scholar
  37. 37.
    Wu C, Tsai C (2009) Robust classification for spam filtering by back-propagation neural networks using behavior-based features. Appl Intell 31(2):107–121 (2009) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Shichao Zhang
    • 1
    • 5
    Email author
  • Feng Chen
    • 2
  • Xindong Wu
    • 3
    • 4
  • Chengqi Zhang
    • 5
  • Ruili Wang
    • 6
  1. 1.Zhejiang Normal UniversityJinhuaChina
  2. 2.La Trobe UniversityMelbourneAustralia
  3. 3.Hefei University of TechnologyHefeiChina
  4. 4.University of VermontVermontUSA
  5. 5.Centre for Quantum Computation and Intelligent SystemsUniversity of TechnologySydneyAustralia
  6. 6.Massey UniversityPalmerston NorthNew Zealand

Personalised recommendations