Applied Intelligence

, Volume 36, Issue 1, pp 29–60 | Cite as

Bounded non-deterministic planning for multimedia adaptation

  • Fernando LópezEmail author
  • Dietmar Jannach
  • José M. Martínez
  • Christian Timmerer
  • Narciso García
  • Hermann Hellwagner


This paper proposes a novel combination of artificial intelligence planning and other techniques for improving decision-making in the context of multi-step multimedia content adaptation. In particular, it describes a method that allows decision-making (selecting the adaptation to perform) in situations where third-party pluggable multimedia conversion modules are involved and the multimedia adaptation planner does not know their exact adaptation capabilities. In this approach, the multimedia adaptation planner module is only responsible for a part of the required decisions; the pluggable modules make additional decisions based on different criteria. We demonstrate that partial decision-making is not only attainable, but also introduces advantages with respect to a system in which these conversion modules are not capable of providing additional decisions. This means that transferring decisions from the multi-step multimedia adaptation planner to the pluggable conversion modules increases the flexibility of the adaptation. Moreover, by allowing conversion modules to be only partially described, the range of problems that these modules can address increases, while significantly decreasing both the description length of the adaptation capabilities and the planning decision time. Finally, we specify the conditions under which knowing the partial adaptation capabilities of a set of conversion modules will be enough to compute a proper adaptation plan.


Bounded non-deterministic multimedia adaptation Planning Decision-making MPEG-7 MPEG-21 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Russell S, Stuart J (2003) Artificial Intelligence: a modern approach, 2nd edn. Prentice Hall, New York Google Scholar
  2. 2.
    Girma B, Brunie L, Pierson JM (2006) Planning-based multimedia adaptation services composition for pervasive computing. In: Proceedings of 2nd international conference on signal-image technology internet based systems (SITIS’2006), pp 132–143 Google Scholar
  3. 3.
    Soetens P, De Geyter M (2005) Applying domain knowledge to multistep media adaptation based on semantic web services. In: Proceedings of workshop on image analysis for multimedia interactive systems (WIAMIS 05) (CD-ROM Proc), 4 pp Google Scholar
  4. 4.
    Burnett IS, Pereira F, de Walle RV, Koenen R (eds) (2006) The MPEG-21 Book. Wiley, New York Google Scholar
  5. 5.
    Mukherjee D, Delfosse E, Kim JG, Wang Y (2005) Optimal adaptation decision-taking for terminal and network quality-of-service. IEEE Trans Multimedia 7(3):454–462 CrossRefGoogle Scholar
  6. 6.
    Sofokleous AA, Angelides MC (2008) DCAF: an MPEG-21 dynamic content adaptation framework. Multimed Tools Appl 40(2):151–182 CrossRefGoogle Scholar
  7. 7.
    Jannach D, Leopold K, Timmerer Ch, Hellwagner H (2006) A knowledge-based framework for multimedia adaptation. Int J Appl Intell 24(2):109–125 CrossRefGoogle Scholar
  8. 8.
    López F, Jannach D, Martínez JM, Timmerer Ch, Hellwagner H, García N (2008) Multimedia adaptation decisions modelled as non-deterministic operations. In: Proceedings of 9th international workshop on image analysis for multimedia interactive services WIAMIS 2008, May 2008, pp 46–49 Google Scholar
  9. 9.
    Martínez JM, Valdés V, Bescos L, Herranz J (2005) Introducing CAIN: a metadata-driven content adaptation manager integrating heterogeneous content adaptation tools. In: Proceedings of WIAMIS’05 (CD-ROM Proc), 4 pp Google Scholar
  10. 10.
    Lopez F, Martínez JM, García N (2009) CAIN-21: an extensible and metadata-driven multimedia adaptation engine in the MPEG-21 framework. In: 4th international conference on semantic and digital media technologies (SAMT 2009), Graz, Austria, 2–4 December. Lectures Notes in Computer Science, vol 5887. Springer, Berlin, pp 114–125 Google Scholar
  11. 11.
    López F, Martinez JM (2007) Multimedia content adaptation modelled as a constraints matching problem with optimisation. In: Proceedings of the 8th international workshop on image analysis for multimedia interactive services, WIAMIS’2007, June 2007, pp 82–85 Google Scholar
  12. 12.
    Plan T, Zorpas G, Bagrodia R (2002) An extensible and scalable content adaptation pipeline architecture to support heterogeneous clients. In: Proceedings of ICDCS, pp 507–516 Google Scholar
  13. 13.
    WWW Consortium (W3C) (1999) XML Path Language (XPath) version 1.0, November 1999 Google Scholar
  14. 14.
    Ghallab M, Nau DS, Traverso P (2004) Automated planning: theory and practice. Morgan Kaufmann, San Mateo zbMATHGoogle Scholar
  15. 15.
    Chapman D (1987) Planning for conjunctive goals. Artif Intell 32:333–379 CrossRefzbMATHGoogle Scholar
  16. 16.
    Chiariglione L (1995) MPEG: a technological basis for multimedia applications. IEEE Multimed 2(1):85–89 CrossRefGoogle Scholar
  17. 17.
    Iftikhar N, Qadir MA, Hamid OA (2007) Group profile and ontology-based semantic annotation of multimedia data for efficient retrieval. In: Proceedings of the 2nd international workshop on context-based information retrieval 2007 in conjunction with sixth international and interdisciplinary conference on modeling and using context, August 2007 Google Scholar
  18. 18.
    ISO/IEC 15938-5:2003 (2003) Information technology—multimedia content description interface—part 5: multimedia description schemes Google Scholar
  19. 19.
    Timmerer C (2008) Generic adaptation of scalable multimedia resources. Verlag Dr. Muller, Saabrücken Google Scholar
  20. 20.
    Blum A, Furst M (1995) Fast planning through Planning Graph analysis. Artif Intell 90:1636–1642 Google Scholar
  21. 21.
    Xu L, Gu W-X, Zhang X-M (2006) Backward-chaining flexible planning. Lecture notes in computer science, vol 3960. Springer, Berlin, pp 1611–3349 Google Scholar
  22. 22.
    Myers KL (1999) A continuous planning and execution framework. AI Mag 20(4):63–69 Google Scholar
  23. 23.
    Apache Java Xalan XSLT Processor. Available online at
  24. 24.
    López F, Nur G, Dogan S, Arachchi HK, Mrak M, Martínez JM, García N, Kondoz A (2010) Improving scalable video adaptation in a knowledge-based framework. In: Proceedings of the 11th international workshop on image analysis for multimedia interactive services (WIAMIS 2010), under publication, April 2010 Google Scholar
  25. 25.
    López F, Martinez JM, García N (2009) Automatic adaptation decision making using an image to video adaptation tool in the MPEG-21 framework. In: Proceedings of the 10th international workshop on image analysis for multimedia interactive services (WIAMIS’09), 6–8 May 2009 Google Scholar
  26. 26.
    Pednault E (2007) Synthesizing plans that contain actions with context-dependent effects. Comput Intell 4(3):356–372 CrossRefGoogle Scholar
  27. 27.
    Erol K, Nau D, Subrahmanian VS (1995) Complexity, decidability and undecidability results for domain-independent planning. Artif Intell 72(1–2):75–88 CrossRefMathSciNetGoogle Scholar
  28. 28.
    JUnit. Available online at

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Fernando López
    • 1
    Email author
  • Dietmar Jannach
    • 2
  • José M. Martínez
    • 1
  • Christian Timmerer
    • 3
  • Narciso García
    • 4
  • Hermann Hellwagner
    • 3
  1. 1.VPULab, EPSUniversidad Autónoma de MadridMadridSpain
  2. 2.Technische Universität DortmundDortmundGermany
  3. 3.ITECKlagenfurt UniversityKlagenfurtAustria
  4. 4.GTI, ETSITUniversidad Politécnica de MadridMadridSpain

Personalised recommendations