Applied Intelligence

, 31:81

Locality kernels for sequential data and their applications to parse ranking

  • Evgeni Tsivtsivadze
  • Tapio Pahikkala
  • Jorma Boberg
  • Tapio Salakoski
Article

Abstract

We propose a framework for constructing kernels that take advantage of local correlations in sequential data. The kernels designed using the proposed framework measure parse similarities locally, within a small window constructed around each matching feature. Furthermore, we propose to incorporate positional information inside the window and consider different ways to do this. We applied the kernels together with regularized least-squares (RLS) algorithm to the task of dependency parse ranking using the dataset containing parses obtained from a manually annotated biomedical corpus of 1100 sentences. Our experiments show that RLS with kernels incorporating positional information perform better than RLS with the baseline kernel functions. This performance gain is statistically significant.

Keywords

Kernel methods Parse ranking Regularized least-squares Natural language processing 

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Evgeni Tsivtsivadze
    • 1
  • Tapio Pahikkala
    • 1
  • Jorma Boberg
    • 1
  • Tapio Salakoski
    • 1
  1. 1.Turku Centre for Computer Science (TUCS), Department of Information TechnologyUniversity of TurkuTurkuFinland

Personalised recommendations