Applied Intelligence

, Volume 28, Issue 3, pp 222–237 | Cite as

Prototypical case mining from biomedical literature for bootstrapping a case base

Article

Abstract

This article addresses the task of mining for cases from biomedical literature to automatically build an initial case base for a case-based reasoning (CBR) system. This research takes place within the Mémoire project, which has for goal to provide a framework to facilitate building CBR systems in biology and medicine. By analyzing medical literature, the ProCaseMiner system mines for medical concepts such as diseases, signs and symptoms, laboratory tests, and treatment plans in relationship with one another, and connects them together in a given medical domain. It then organizes these concepts in a higher-level structure called a case. This case mining component provides a definite help to bootstrap the creation of a biomedical CBR system case base, composed of both concrete cases and prototypical cases. Currently, most cases learnt correspond to prototypical cases, given the level of abstraction of their features. This article validates the approach by presenting a comparison between the prototypical cases learnt from stem-cell transplantation domain with those created by a team of experts in the domain.

Keywords

Medical case-based reasoning Case-based reasoning Medical informatics Text mining Case mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Swanson DR (2001) Information discovery from complementary literatures: categorizing viruses as potential weapons. J Am Soc Inf Sci 52(10):797–812 CrossRefGoogle Scholar
  2. 2.
    Swanson DR, Smalheiser NR (1997) An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif Intell 9:183–203 CrossRefGoogle Scholar
  3. 3.
    Han J, Kamber M (2006) Data mining concepts and techniques, 2nd edn. Kaufmann, San Mateo Google Scholar
  4. 4.
    Hearst MA (1999) Untangling text data mining. In: Dale R, Church K (eds) Proceedings of the 37th annual meeting of the association for computational linguistics. Association for Computational Linguistics, Morristown, pp 3–10 CrossRefGoogle Scholar
  5. 5.
    Nasukawa T, Nagano T (2001) Text analysis and knowledge mining system. In: Knowledge management Special Issue, IBM Syst J, 40:967–984 Google Scholar
  6. 6.
    Dorre J, Gerstl P, Seiffert R (1999) Text mining: finding nuggets in mountains of textual data. In: Chaudhuri S, Madigan D, Fayyad U (eds) Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 398–401 CrossRefGoogle Scholar
  7. 7.
    Weeber M, Vos R, Klein H, de Jong-van den Berg LTW, Aronson AR, Lolema G (2003) Generating hypotheses by discovering implicit associations in the literature: a case report of a search for new potential therapeutic uses for thalidomide. J Am Med Inf Assoc 10(3):252–259 CrossRefGoogle Scholar
  8. 8.
    Friedman C, Kra P, Yu H, Krauthammer M, Rzhetsky A (2001) GENIES: a natural-language processing system for the extraction of molecular pathways from journal articles. Bioinformatics 17(1):S74–S82 Google Scholar
  9. 9.
    Bichindaritz I, Akkineni SS (2005) Concept Mining for Indexing Medical Literature. In: Perner P, Ahlemeyer-Stubbe A (eds) Machine learning and data mining (MLDM), industrial conference on data mining (ICDM) 2005. Lectures notes in artificial intelligence. Springer, Leipzig, pp 682–691 Google Scholar
  10. 10.
    Bichindaritz I (2006) Named relationship mining from biomedical literature. In: Perner P, Ahlemeyer-Stubbe A (eds) Industrial conference on data mining (ICDM) 2006. Lectures notes in artificial intelligence. Springer, Leipzig, pp 64–75 Google Scholar
  11. 11.
    Bichindaritz I (2004) Mémoire: case-based reasoning meets the semantic web in biology and medicine. In: Funk P, Gonzàlez Calero PA (eds) Proceedings of ECCBR 2004. Lecture notes in artificial intelligence, vol 3155. Springer, Berlin, pp 47–61 Google Scholar
  12. 12.
    Bichindaritz I, Kansu E, Sullivan KM (1998) Case-based reasoning in CARE-PARTNER: gathering evidence for evidence-based medical practice. In: European workshop on case-based reasoning. Lectures notes in artificial intelligence, vol 1488. Springer, Berlin, pp 334–345 CrossRefGoogle Scholar
  13. 13.
    Bichindaritz I (2006) Semantic interoperability of case bases in biology and medicine. In: Bichindaritz I (ed) Special issue on case-based reasoning in the health sciences. Artif Intell Med, 36(2):177–192 Google Scholar
  14. 14.
    National Library of Medicine (2005) The Unified Medical Language System. http://umls.nlm.nih.gov. Last access: 2005-04-01
  15. 15.
    National Library of Medicine (2004) The Specialist NLP Tools. http://specialist.nlm.nih.gov. Last access: 2005-04-01
  16. 16.
    National Library of Medicine (2005) MetaMap Transfer (MMTx). http://mmtx.nlm.nih.gov. Last access: 2005-04-01
  17. 17.
    Fuller S, Revere D, Bugni P, Martin GM (2004) A knowledgebase system to enhance scientific discovery: telemakus. Biomed Digit Libr. Sep 21 1(1):2 CrossRefGoogle Scholar
  18. 18.
    Wilson DC, Leake DB (2001) Mainting case-based reasoners: dimensions and directions, Comput Intel J, 17(2) Google Scholar
  19. 19.
    Ashley KD, Lenz M (eds) (1998) Textual case-based reasoning, AAAI-98 Workshop. Technical Report WS-98-12, AAAI, Menlo Park Google Scholar
  20. 20.
    Daniels JJ, Rissland EL (1995) A case-based approach to intelligent information retrieval. In: Proceedings of SIGIR. ACM, New York, pp 238–245 Google Scholar
  21. 21.
    Beck HW (1991) Language acquisition from cases. In: Bareiss R (ed) Proceedings of a workshop on case-based reasoning (DARPA). Kaufmann, San Mateo, pp 159–169 Google Scholar
  22. 22.
    Wilson DC, Bradshaw S (2000) CBR textuality. Expert Updat 3(1):28–37 Google Scholar
  23. 23.
    Wiratunga N, Koychev I, Massie S (2004) Feature selection and generalisation for retrieval of textual cases. In: Funk P, Gonzàlez Calero P (eds) Proceedings of ECCBR 04. Lecture notes in artificial intelligence, vol 3155. Springer, Berlin, pp 806–820 Google Scholar
  24. 24.
    Qiang Y, Cheng H (2003) Case mining from large databases. In: Ashley K, Bridge DG (eds) Proceedings of ICCBR 03. Lecture notes in artificial intelligence, vol 2689. Springer, Berlin, pp 691–702 Google Scholar
  25. 25.
    Montani S, Portinale L, Bellazzi R, Leornardi G (2004) RHENE: a case retrieval system for hemodialysis cases with dynamically monitored parameters. In: Funk P, Gonzàlez Calero P (eds) Proceedings of ECCBR 04. Lecture notes in artificial intelligence, vol 3155. Springer, Berlin, pp 659–672 Google Scholar
  26. 26.
    Nilsson M, Funk P (2004) A case-based classification of respiratory sinus arrhythmia. In: Funk P, Gonzàlez Calero P (eds) Proceedings of ECCBR 04. Lecture notes in artificial intelligence, vol 3155. Springer, Berlin, pp 673–685 Google Scholar
  27. 27.
    Niloofar A, Jurisica I (2004) Maintaining case-based reasoning systems: a machine learning approach. In: Funk P, Gonzàlez Calero P (eds) Proceedings of ECCBR 04. Lecture notes in artificial intelligence, vol 3155. Springer, Berlin, pp 17–31 Google Scholar
  28. 28.
    Armengol E, Plaza E (1994) Integrating induction in a case-based reasoner. In: Keane M, Haton J-P, Manago M (eds) Proceedings of EWCBR 94. Acknosoft, Paris, pp 243–251 Google Scholar
  29. 29.
    Bellazzi R, Montani S, Portinale L (1995) Retrieval in a prototype-based case library: a case study in diabetes therapy revision. In: Smyth B, Cunningham P (eds) Proceedings of ECCBR 98. Lecture notes in artificial intelligence, vol 1488. Springer, Berlin, pp 64–75 Google Scholar
  30. 30.
    Schmidt R, Gierl L (1995) Experiences with prototype designs and retrieval methods in medical case-based reasoning systems. In: Smyth B, Cunningham P (eds) Proceedings of ECCBR. Lecture notes in artificial intelligence, vol 1488. Springer, Berlin, pp 370–381 Google Scholar
  31. 31.
    Malek M, Rialle V (1994) A case-based reasoning system applied to neuropathy diagnosis. In: Keane M, Haton J-P, Manago M (eds) Proceedings of EWCBR. Acknosoft, Paris, pp 329–336 Google Scholar
  32. 32.
    Reategui E, Campbell JA, Borghetti S (1995) Using a neural network to learn general knowledge in a case-based system. In: Veloso M, Aamodt A (eds) Proceedings of ICCBR. Lecture notes in artificial intelligence, vol 1010. Springer, Berlin, pp 528–537 Google Scholar
  33. 33.
    Portinale L, Torasso P (1995) ADAPTER: an integrated diagnostic system combining case-based and abductive reasoning. In: Veloso M, Aamodt A (eds) Proceedings of ICCBR. Lecture notes in artificial intelligence, vol 1010. Springer, Berlin, pp 277–288 Google Scholar
  34. 34.
    Mougouie B, Bergmann R (1995) Similarity assessment for generalized cases by optimization methods. In: Craw S, Preece A (eds) Proceedings of EWCBR 02. Lecture notes in artificial intelligence, vol 2416. Springer, Berlin, pp 249–263 Google Scholar
  35. 35.
    Maximini K, Maximini R, Bergmann R (2003) An investigation of generalized cases. In: Ashley KD, Bridge DG (eds) Proceedings of ICCBR 03. Lecture notes in artificial intelligence, vol 2689. Springer, Berlin, pp 261–275 Google Scholar
  36. 36.
    Branting KL (1997) Stratified case-based reasoning in non-refinable abstraction hierarchies. In: Leake D, Plaza E (eds) Proceedings of ICCBR. Lecture notes in artificial intelligence, vol 1266. Springer, Berlin, pp 519–530 Google Scholar
  37. 37.
    Perner P (1995) Different learning strategies in a case-based reasoning system for image interpretation. In: Smyth B, Cunningham P (eds) Proceedings of ECCBR. Lecture notes in artificial intelligence, vol 1488. Springer, Berlin, pp 251–261 Google Scholar
  38. 38.
    Bichindaritz I (1995) A case based reasoner adaptive to several cognitive tasks. In: Veloso M, Aamodt A (eds) Proceedings of ICCBR 95. Lecture notes in artificial intelligence, vol 1010. Springer, Berlin, pp 391–400 Google Scholar
  39. 39.
    Bichindaritz I (1995) Case-based reasoning and conceptual clustering: for a co-operative approach. In: Watson I, Fahrir M (eds) Lecture notes in artificial intelligence, vol 1020. Springer, Berlin, pp 91–106 Google Scholar
  40. 40.
    Lebowitz M (1986) Concept learning in a rich input domain: generalization-based memory. In: Michalski RS, Carbonell JG, Mitchell TM (eds) Machine learning: an artificial intelligence approach, vol 2. Kaufmann, Los Altos, pp 3–25 Google Scholar
  41. 41.
    Perner P (2003) Incremental learning of retrieval knowledge in a case-based reasoning system. In: Ashley K, Bridge DG (eds) Proceedings of ICCBR 03. Lecture notes in artificial intelligence, vol 2689. Springer, Berlin, pp 422–436 Google Scholar
  42. 42.
    Dìaz-Agudo B, Gonzàlez-Calero P (1995) Classification based retrieval using formal concept analysis. In: Aha D, Watson I (eds) Proceedings of ICCBR 01. Lecture notes in artificial intelligence, vol 2080. Springer, Berlin, pp 173–188 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.University of Washington, Institute of TechnologyTacomaUSA

Personalised recommendations