Advertisement

Applied Intelligence

, Volume 29, Issue 2, pp 111–115 | Cite as

Soft computing techniques applied to finance

  • Asunción MochónEmail author
  • David Quintana
  • Yago Sáez
  • Pedro Isasi
Article

Abstract

Soft computing is progressively gaining presence in the financial world. The number of real and potential applications is very large and, accordingly, so is the presence of applied research papers in the literature. The aim of this paper is both to present relevant application areas, and to serve as an introduction to the subject. This paper provides arguments that justify the growing interest in these techniques among the financial community and introduces domains of application such as stock and currency market prediction, trading, portfolio management, credit scoring or financial distress prediction areas.

Keywords

Soft computing Finance Applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353 zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Zadeh LA (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3:28–44 zbMATHMathSciNetGoogle Scholar
  3. 3.
    Zadeh LA (1981) Possibility theory and soft data analysis. In: Cobb L, Thrall RM (eds) Mathematical frontiers of the social and policy sciences. Westview, Boulder, pp 69–129 Google Scholar
  4. 4.
    Zadeh LA (1994) Fuzzy logic, neural networks, and soft computing. Commun ACM 37(3):77–84 CrossRefMathSciNetGoogle Scholar
  5. 5.
    Klir GJ, Yuan B, Clair USt (1997) Fuzzy set theory: foundations and applications. Prentice Hall, New York zbMATHGoogle Scholar
  6. 6.
    Bolland PJ, Connor JT (1997) A constrained neural network Kalman filter for price estimation in high frequency financial data. Int J Neural Syst 8(4):399–415 CrossRefGoogle Scholar
  7. 7.
    Malliaris M, Salchenberger L (1993) A neural network model for estimating option prices. J Appl Intell 3(3):193–206 CrossRefGoogle Scholar
  8. 8.
    Palmer RG, Arthur WB, Holland JH, LeBaron B, Tayler P (1994) Artificial economic life: a simple model of a stockmarket. Phys D 75:264–274 zbMATHCrossRefGoogle Scholar
  9. 9.
    Lettau M (1997) Explaining the facts with adaptive agents: the case of mutual funds flows. J Econ Dyn Control 21:1117–1148 zbMATHCrossRefGoogle Scholar
  10. 10.
    Sapena O, Botti V, Argente E (2003) Application of neural networks to stock prediction in “pool” companies. Appl Artif Intell 17(7):661–673 CrossRefGoogle Scholar
  11. 11.
    Yao J, Poh HL (1995) Forecasting the KLSE index using neural networks. In: Proceedings of the IEEE international conference on neural networks, London, pp 1012–1017 Google Scholar
  12. 12.
    Baestaens DE, van den Bergh WM (1995) Tracking the Amsterdam stock index using neural networks. In: Neural networks in the capital markets. Wiley, New York, pp 149–162 Google Scholar
  13. 13.
    Wei H, Lai KK, Nakamori Y, Wang SY (2004) Forecasting foreign exchange rates with artificial neural networks: a review. Int J Inf Technol Decis Mak 3:145–165 CrossRefGoogle Scholar
  14. 14.
    Srinivasa KG, Sridharan K, Deepa Shenoy P, Venugopal KR, Patnaik LM (2004) EASOM: an efficient soft computing method for predicting the share values. In: Proceedings of IASTED international conference on artificial intelligence and applications, Austria, Innsburg, pp 264–269 Google Scholar
  15. 15.
    Austin M, Looney C, Zhuo J (1997) Security market timing using neural network models. New Rev Appl Expert Syst 3:3–14 Google Scholar
  16. 16.
    Doeksen B, Abraham A, Thomas J, Paprzycki M (2005) Real stock trading using soft computing models. In: Proceedings of the information technology: coding and computing, ITCC 2005, vol 2, pp 162–167 Google Scholar
  17. 17.
    Tan PY (1994) Using genetic algorithm to optimize an oscillator-based market timing system. In: Proceedings of the second Singapore international conference on intelligent systems SPICIS’94, Singapore, pp 115–122 Google Scholar
  18. 18.
    Fernández-Rodríguez F, González-Martel C, Sosvilla-Rivero S (2005) Optimization of technical rules by genetic algorithms: evidence from the Madrid stock market. Appl Financ Econ 15(11):773–775 CrossRefGoogle Scholar
  19. 19.
    Chan KCC, Foo KT (1995) Enhancing technical analysis in the Forex market using neural networks. In: Proceedings of the IEEE international conference on neural networks, Australia, pp 1023–1027 Google Scholar
  20. 20.
    Allen F, Karjalainen R (1999) Using genetic algorithms to find technical trading rules. J Financ Econ 51:245–271 CrossRefGoogle Scholar
  21. 21.
    Neely CJ, Weler P, Dittmar R (1997) Is technical analysis in the foreign exchange market profitable? A genetic programming approach. J Financ Quant Anal 32(4):405–426 CrossRefGoogle Scholar
  22. 22.
    Casas A ( 2005) Reducing portfolio volatility with artificial neural networks. In: Proceedings of the IASTED international conference on artificial intelligence, Lynbrook, Austria, pp 152–157 Google Scholar
  23. 23.
    Lai KK, Yu L, Wang S, Zhou C (2006) A double-stage genetic optimization algorithm for portfolio selection. In: Proceedings of the 13th international conference on neural information processing, Hong Kong, vol 3, pp 928–937 Google Scholar
  24. 24.
    Liu YC, Wang T, Gao LQ, Ren P, Li BZ (2005) Fuzzy portfolio optimization model based on worst-case VaR. In: Proceedings of 2005 international conference on machine learning and cybernetics, vol 6, pp 3512–3516 Google Scholar
  25. 25.
    Jeurissen R, van den Berg J (2005) Index tracking using a hybrid genetic algorithm. In: Proceedings of the CIMA’05 conference, Istanbul. Paper number 910 Google Scholar
  26. 26.
    Beasley JE, Meade N, Chang TJ (2003) An evolutionary heuristic for the index tracking problem. Eur J Oper Res 148:621–643 zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Shapcott J (1992) Index tracking: genetic algorithms for investment portfolio selection. Report EPCC-SS92-24, Edinburgh Parallel Computing Centre, The University of Edinburgh Google Scholar
  28. 28.
    Thomas LC (2000) A survey of credit and behavioural scoring: forecasting financial risk of lending to customers. Int J Forecast 16:149–172 zbMATHCrossRefGoogle Scholar
  29. 29.
    Sarlija N, Bensic M, Zekic-Susac M (2006) A neural network classification of credit applicants in consumer credit scoring. In: Proceedings of the 24th IASTED international conference on artificial intelligence and applications, Innsbruck, Austria, pp 205–210 Google Scholar
  30. 30.
    Malhotra R, Malhotra DKR (2003) Evaluating consumer loans using neural networks. Omega 31:83–96 CrossRefGoogle Scholar
  31. 31.
    Lai KK, Wang YuLS, Zhou L (2006) Neural network metalearning for credit scoring. In: Lecture notes in computer science, vol 4113, pp 403–408 Google Scholar
  32. 32.
    Yobas MB, Crook JN, Ross P (2000) Credit scoring using neural and evolutionary techniques. IMA J Manag Math 11(2):111–125 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Hoffmann F, Baesens B, Mues C, Vanthienen J (2006) Inferring descriptive and approximate fuzzy rules for credit scoring using evolutionary algorithms. Eur J Oper Res 177(1):540–555 CrossRefGoogle Scholar
  34. 34.
    Shin KA (2002) Genetic algorithm application in bankruptcy prediction modeling. Int J Expert Syst Appl 23:321–328 CrossRefGoogle Scholar
  35. 35.
    Mckee TE (2000) Developing a bankruptcy prediction model via rough sets theory. Int J Intell Syst Account Financ Manag 9(3):159–173 CrossRefGoogle Scholar
  36. 36.
    Odom M, Sharda RA (1990) Neural network model for bankruptcy prediction. In: Proceedings of the IEEE international conference on neural networks, vol II, pp 163–168 Google Scholar
  37. 37.
    Coats PK, Fant LF (1993) Recognizing financial distress patterns using a neural network tool. Financ Manag 22(3):142–155 CrossRefGoogle Scholar
  38. 38.
    Atiya AF (2001) Bankruptcy prediction for credit risk using neural networks: a survey and new results. IEEE Trans Neural Netw 12(4):929–935 CrossRefGoogle Scholar
  39. 39.
    Almeida Ribeiro R, Zimmermann HJ, Yager R, Kacprzyk J (1999) Soft computing in financial engineering. In: Studies in fuzziness and soft computing. Springer, Heidelberg Google Scholar
  40. 40.
    Chen S (ed) (2002) Evolutionary computation in economics and finance, studies in fuzziness and soft computing. Springer, New York Google Scholar
  41. 41.
    Chen S, Wang P (eds) (2003) Computational intelligence in economics and finance, advanced information processing. Springer, New York Google Scholar
  42. 42.
    Trippi RR, Turban E (eds) (1996) Neural networks in finance and investing: Using artificial intelligence to improve real world performance, revised edn. IRWIN Professional, Chicago Google Scholar
  43. 43.
    Vanstone B, Tan C (2003) A survey of the application of soft computing to investment and financial trading. In: Proceedings of the Australian and New Zealand intelligent information systems conference, Sydney, pp 211–216 Google Scholar
  44. 44.
    Wong BK, Selvi Y (1998) Neural network applications in finance: a review and analysis of literature (1990–1996). Inf Manag 34:129–139 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Asunción Mochón
    • 1
    Email author
  • David Quintana
    • 2
  • Yago Sáez
    • 2
  • Pedro Isasi
    • 2
  1. 1.Department of Applied EconomicsUNEDMadridSpain
  2. 2.Department of Computer ScienceUniversity Carlos III de MadridMadridSpain

Personalised recommendations