Applied Intelligence

, Volume 27, Issue 1, pp 1–20 | Cite as

Agent-oriented modeling of the dynamics of biological organisms

  • Catholijn M. Jonker
  • Jan Treur


In this paper, the agent-oriented modeling perspective to cope with biological complexity is discussed. Three levels of dynamics can distinguished and related to each other: dynamics of externally observable agent behavior, dynamics of internal agent processes, and dynamics of multi-agent organisations. This paper addresses the first two. Basic agent concepts to describe externally observable agent behavior are introduced. In the context of two case studies on animal behavior and cell functioning, it is shown how these concepts can be used to specify dynamic properties. In addition, a number of basic agent concepts to describe an agent’s internal processes are introduced. Also, these concepts are illustrated for specification of dynamic properties in the two case studies. Furthermore, the relationships between dynamic properties of externally observable behavior and dynamic properties of internal agent processes are addressed and illustrated for the animal and cell case studies.


Agent Modeling Behavior Dynamics Organisms Computational biology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barringer H, Fisher M, Gabbay D, Owens R, Reynolds M (1996) The imperative future: principles of executable temporal logic. Research Studies Press Ltd. and John Wiley & SonsGoogle Scholar
  2. 2.
    Ben-Jacob E, Cohen I, Czirók A, Vicsek T, Gutnick DL (1997) Chemomodulation of cellular movement and collective formation of vortices by swarming bacteria. Physica A 238:181–197CrossRefGoogle Scholar
  3. 3.
    Bosse T, Jonker CM, van der Meij L, Treur J (2005) LEADSTO: A language and environment for analysis of dynamics by simulation. In: Eymann T, Kluegl F, Lamersdorf W, Klusch M, Huhns MN (eds) Proceedings of the third german conference on multi-agent system technologies, MATES’05. Lecture notes in artificial intelligence, vol. 3550. Springer Verlag, pp 165–178Google Scholar
  4. 4.
    Bosse T, Jonker CM, Treur J (2006) On the use of multi-agent organisation modelling techniques to address biological organisation. Technical Report. Vrije Universiteit AmsterdamGoogle Scholar
  5. 5.
    Brazier FMT, Dunin-Keplicz B, Treur J, Verbrugge LC (1999) Modelling internal dynamic behavior of BDI agents. In: Meyer J-JCh, Schobbes PY (eds) Formal models of agents (Selected papers from final ModelAge Workshop). Lecture notes in AI, vol 1760. Springer Verlag, pp 36–56Google Scholar
  6. 6.
    Brazier FMT, Jonker CM, Treur J (2002) Principles of component-based design of intelligent agents. Data Knowl Eng 41:1–28zbMATHCrossRefGoogle Scholar
  7. 7.
    Brazier FMT, Jonker CM, Treur J (2000) Compositional design and reuse of a generic agent model. Appl Artif Intell J 14:491–538CrossRefGoogle Scholar
  8. 8.
    Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition. Sci Comput Program 20:3–50zbMATHCrossRefGoogle Scholar
  9. 9.
    Dennett DC (1991) Real patterns. J Philos 88:27–51CrossRefGoogle Scholar
  10. 10.
    Dennett D (1987) The intentional stance. MIT Press, Cambridge, MAGoogle Scholar
  11. 11.
    Dubois E, Du Bois P, Zeippen JM (1995) A formal requirements engineering method for real-time, concurrent, and distributed systems. In: Proceedings of the real-time systems conference, RTS’95Google Scholar
  12. 12.
    Fisher M (2005) Temporal development methods for agent-based systems. J Auton Agents Multi-Agent Syst 10:41–66CrossRefGoogle Scholar
  13. 13.
    Fisher M (1996) A temporal semantics for concurrent METATEM. J Symbolic Comput 22(5):627–648, November/December 1996, Academic PressGoogle Scholar
  14. 14.
    Galton A (2003) Temporal logic. Stanford Encyclopedia of Philosophy, URL:
  15. 15.
    Galton A (2006) Operators vs arguments: The Ins and Outs of reification. Synthese 150:415–441zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Gamboa R (2000) Continuity and differentiability in ACL2. In: Kaufmann M, Manolios P, Moore JS (eds) Computer-aided reasoning: ACL2 case studies. Kluwer Academic PressGoogle Scholar
  17. 17.
    Gamboa R, Kaufmann M (2001) Nonstandard analysis in ACL2. J Autom Reasoning 27:323–351zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Georgeff MP, Lansky AL (1987) Reactive reasoning and planning. In: Proceedings of the national conference of the American association for AI, AAAI’87. Morgan KaufmanGoogle Scholar
  19. 19.
    Hempel CG, Oppenheim P (1948) Studies in the logic of explanation. Philos Sci 15:135–175CrossRefGoogle Scholar
  20. 20.
    Herlea Damian DE, Jonker CM, Treur J, Wijngaards NJE (2005) Integration of behavioural requirements specification within compositional knowledge engineering. Knowl-Based Syst J 18:353–365CrossRefGoogle Scholar
  21. 21.
    Herlea DE, Jonker CM, Treur J, Wijngaards NJE (1999) Specification of behavioral requirements within compositional multi-agent system design. In: Garijo FJ, Boman M (eds) Multi-agent system engineering. Proceedings of the 9th European workshop on modelling autonomous agents in a multi-agent world, MAAMAW’99. Lecture notes in AI, vol 1647. Springer Verlag, Berlin, pp 8–27Google Scholar
  22. 22.
    Jacob P (1997) What minds can do: intentionality in a non-intentional world. Cambridge University PressGoogle Scholar
  23. 23.
    Jennings NR (2000) On agent-based software engineering. Artif Intell 117:277–296zbMATHCrossRefGoogle Scholar
  24. 24.
    Jennings NR, Wooldridge M (1998) Applications of intelligent agents. In: (Jennings and Wooldridge, 1998) pp 3–28Google Scholar
  25. 25.
    Jennings NR, Wooldridge M (eds) (1998) Agent technology: foundations, applications, and markets. Springer VerlagGoogle Scholar
  26. 26.
    Jonker CM, Letia IA, Treur J (2002) Diagnosis of the dynamics within an organisation by trace checking of behavioural requirements. In: Wooldridge M, Weiss G, Ciancarini P (eds) Proceedings of the 2nd international workshop on agent-oriented software engineering, AOSE’01. Lecture notes in computer science, vol 2222. Springer Verlag, pp 17–32Google Scholar
  27. 27.
    Jonker CM, Snoep JL, Treur J, Westerhoff HV, Wijngaards WCA (2001) Temporal modelling of the dynamics of intentional bacterial behaviour. In: Cottam R, Paton R (eds) Proceedings of the fourth international workshop on information processing in cells and tissues. IPCAT 2001Google Scholar
  28. 28.
    Jonker CM, Snoep JL, Treur J, Westerhoff HV, Wijngaards WCA (2002) Putting intentions into cell biochemistry: an artificial intelligence perspective. J Theor Biol 214:105–134CrossRefGoogle Scholar
  29. 29.
    Jonker CM, Treur J (2002) Compositional verification of multi-agent systems: a formal analysis of pro-activeness and reactiveness. Int J Coop Inf Syst 11:51–92. Earlier, shorter version in: de Roever WP, Langmaack H, Pnueli A (eds) Proceedings of the international workshop on compositionality, COMPOS’97. Lecture notes in computer science, vol 1536. Springer Verlag, 1998, pp 350–380Google Scholar
  30. 30.
    Jonker CM, Treur J (1998) Agent-based simulation of reactive, pro-active and social animal behavior. In: Mira J, del Pobil AP, Ali M (eds) Methodology and tools in knowledge-based systems (Proceedings of the 11th international conference on industrial and engineering applications of AI and expert systems, IEA/AIE’98, vol I), Lecture Notes in AI, vol 1415. Springer Verlag, pp 584–595Google Scholar
  31. 31.
    Jonker CM, Treur J (2003) A temporal-interactivist perspective on the dynamics of mental states. Cogn Syst Res J 4:137–155CrossRefGoogle Scholar
  32. 32.
    Jonker CM, Treur J, Wijngaards WCA (2003) A temporal modelling environment for internally grounded beliefs, desires and intentions. Cogn Syst Res J 4(3):191–210. Earlier, shorter version in: Dunin-Keplicz B, Nawarecki E (eds) From theory to practice in multi-agent systems, Proceedings of the second international workshop of central and eastern Europe on multi-agent systems, CEEMAS’01, 2001. Lecture Notes in AI, vol 2296. Springer Verlag, 2002Google Scholar
  33. 33.
    Kholodenko BN, Demin OV, Moehren G, Hoek JB (1999) Quantification of short term signaling by the epidermal growth factor receptor. J Biol Chem 274(42):30169–30181Google Scholar
  34. 34.
    Kim J (1996) Philosophy of mind. Westview pressGoogle Scholar
  35. 35.
    Müller JP (1996) The design of intelligent agents: a layered approach. Lecture notes in AI, vol 1177. Springer VerlagGoogle Scholar
  36. 36.
    Müller JP, Pischel M, Thiel M (1995) Modelling reactive behavior in vertically layered agent architectures. In: (Wooldridge and Jennings, 1995) pp 261–276Google Scholar
  37. 37.
    Nwana HS (1996) Software agents: an overview. Knowl Eng Rev 11(3):205–244Google Scholar
  38. 38.
    Nwana HS, Ndumu DT (1998) A brief introduction to software agent technology. In: (Jennings and Wooldridge, 1998) pp 29–47Google Scholar
  39. 39.
    Odell J, Van Dyke Parunak H, Bauer B (2000) Representing agent interaction protocols in UML. Proceedings AOSE 2000, vol 1957. Springer Verlag, LNCS, pp 121–140Google Scholar
  40. 40.
    Odell J, Van Dyke Parunak H, Fleischer M (2003) Modeling agents and their environment: The communication environment. J Object Technol 2(1):39–52Google Scholar
  41. 41.
    Odell J, Van Dyke Parunak H, Fleischer M (2003) Modeling agents and their environment: the communication environment. J Object Technol 2(3):39–52Google Scholar
  42. 42.
    Parunak HVD (1997) ‘Go to the Ant’: Engineering principles from natural agent systems. Ann Oper Res 75:69–101zbMATHCrossRefGoogle Scholar
  43. 43.
    Rao AS, Georgeff MP (1991) Modeling rational agents within a BDI architecture. In: Fikes R, Sandewall E (eds) Proceedings of the second conference on knowledge representation and reasoning. Morgan Kaufman, pp 473–484Google Scholar
  44. 44.
    Rizzi M, Baltes M, Theobald U, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol Bioeng 55:592–608CrossRefGoogle Scholar
  45. 45.
    Rohwer JM, Meadow ND, Roseman S, Westerhoff HV, Postma PW (2000) Understanding glucose transport by the bacterial phosphoenolpyruvate: glycose phosphotransferase system on the basis of kinetic measurements in vitro. J Biol Chem 275(45):34909–34921CrossRefGoogle Scholar
  46. 46.
    van Rotterdam BJ, Crielaard W, van Stokkum IH, Hellingwerf KJ, Westerhoff HV (2002) Simplicity in complexity: the photosynthetic reaction center performs as a simple 0.2 V battery. FEBS Lett 510(1–2):105–107Google Scholar
  47. 47.
    Sharpanskykh A, Treur J (2006) Verifying interlevel relations within multi-agent systems. In: Proceedings of the 17th European conference on artificial intelligence. Riva del Garda. IOS PressGoogle Scholar
  48. 48.
    Stuart AM, Humphries AR (1996) Dynamical systems and numerical analysis. Cambrige University PressGoogle Scholar
  49. 49.
    Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313–5329CrossRefGoogle Scholar
  50. 50.
    Vauclair J (1996) Animal cognition. Harvard Univerity Press, Cambridge, Massachusetts.Google Scholar
  51. 51.
    Westerhoff HV (2001) The silicon cell, not dead but live! Metab Eng 3(3):207–210Google Scholar
  52. 52.
    Wooldridge M, Jennings NR (eds) (1995) Intelligent agents. Lecture notes in artificial intelligence, vol 890. Springer Verlag, BerlinGoogle Scholar
  53. 53.
    Wooldridge MJ, Jennings NR (1995) Agent theories, architectures, and languages: a survey. In: (Wooldridge and Jennings, 1995) pp 1–39Google Scholar
  54. 54.
    Wooldridge MJ, Jennings NR (1995) Intelligent agents: theory and practice. Knowl Eng Rev 10(2):115–152CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Artificial IntelligenceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Man Machine Interaction Group, Department of Mediametics, Faculty of Electrical Engineering, Mathematics and Computer ScienceDelft University of TechnologyCD DelftThe Netherlands

Personalised recommendations