Advertisement

The Connectedness of Mental Health Providers Referring Patients to a Treatment Study for Post-Traumatic Stress: A Social Network Study

  • 99 Accesses

  • 1 Citations

Abstract

We conducted a process evaluation in the context of a Hybrid Type 1 randomized controlled trial testing two treatments for post-traumatic stress, using a web-based social network survey and semi-structured interviews to illustrate the relationship between providers’ influence and likelihood of referring patients to the RCT. Providers with high indegree centrality (designated by other providers as someone they seek information from) were significantly more likely to refer patients to the RCT, and serve as an influence to others’ referral behavior. Interviews provided additional data to consider for future studies aimed at increasing the uptake of evidence-based practices.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bokhour, B. G., Cohn, E. S., Cortes, D. E., Solomon, J. S., Fix, G. M., Elwy, A. R., …Kressin, N. R. (2012). Role of patients’ explanatory models and daily-lived experience in hypertension self-management. Journal of General Internal Medicine, 27, 1626–1634.

  2. Bonacich, P. (1972). Technique for analyzing overlapping memberships. Sociological Methodology,4, 176–185.

  3. Bormann, J. E., Thorp, S. R., Smith, E. G., Glickman, M., Beck, D., Plumb, D. N., …Elwy, A. R. (2018). Individual treatment of posttraumatic stress disorder using mantram repetition: A randomized clinical trial. American Journal of Psychiatry, 175, 979–988. https://doi.org/10.1176/appi.ajp.2018.17060611

  4. Bormann, J. E., Thorp, S. R., Wetherell, J. L., Golshan, S., & Lang, A. J. (2013). Meditation-based mantram intervention for Veterans with posttraumatic stress disorder: A randomized trial. Psychological Trauma: Theory, Research, Practice and Policy,5, 259–267.

  5. Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods & Research,33, 261–304. https://doi.org/10.1177/0049124104268644.

  6. Charmaz, K. (2014). Constructing grounded theory (2nd ed.). Thousand Oaks: Sage.

  7. Creswell, J. W., & Plano Clark, V. L. (2011). Designing and conducting mixed methods research. Thousand Oaks: Sage.

  8. Curran, G. M., Bauer, M., Mittman, B., Pyne, J. M., & Stetler, C. (2012). Effectiveness-implementation hybrid designs: combining elements of clinical effectiveness and implementation research to enhance public health impact. Medical Care,50, 217–226. https://doi.org/10.1097/MLR.0b013e3182408812.

  9. Dillman, D. A., Smyth, J. D., & Melani Christian, L. (2009). Internet, mail and mixed-mode surveys: The tailored design method. Hoboken: John Wiley and Sons.

  10. Easwaran, E. (2009). The mantram handbook: A practice guide to choosing your mantram and calming your mind. Berkeley: Nilgiri Press.

  11. Elwy, A. R., Itani, K., Bokhour, B. G., Mueller, N. M., Glickman, M. E., Zhao, S.,… Gallagher, T. H. (2016). Surgeons’ disclosures of clinical adverse events. JAMA Surgery, 151, 1015–1021. https://doi.org/10.1001/jamasurg.2016.1787

  12. Elwy, A. R., Yeh, J., Worcester, J., & Eisen, S. V. (2011). An illness perception model of primary care patients’ help-seeking for depression. Qualitative Health Research,21, 1495–1507. https://doi.org/10.1177/1049732311413781.

  13. Fetters, M. D., Curry, L. A., & Creswell, J. W. (2013). Achieving integration in mixed methods designs—principles and practices. Health Services Research,48, 2134–2156. https://doi.org/10.1111/1475-6773.12117.

  14. Forti, E., Franzoni, C., & Sobrero, M. (2013). Bridges or isolates? Investigating the social networks of academic inventors. Research Policy,42, 1378–1388.

  15. Freeman, L. (1979). Centrality in social networks: conceptual clarification. Social Networks,1, 215–239.

  16. Gehlert, S., Carothers, B. J., Lee, J. A., Gill, J., Luke, D., & Colditz, G. (2015). A social network analysis approach to diagnosing and improving the functioning of transdisciplinary teams in public health. Transdisciplinary Journal of Engineering & Science,6, 11–22. https://doi.org/10.22545/2015/00070.

  17. Gephi Organization. (2017). The Open Graph Viz Platform. Gephi Version 0.9.1

  18. Gesell, S. B., Barkin, S. L., & Valente, T. W. (2013). Social network diagnostics: A tool for monitoring group interventions. Implementation Science,8, 116. https://doi.org/10.1186/1748-5908-8-116.

  19. Glasgow, R. E., Lichtenstein, E., & Marcus, A. C. (2003). Why don’t we see more translation of health promotion research to practice? Rethinking the efficacy-to-effectiveness transition. American Journal of Public Health,93, 1261–1267.

  20. Goetz, M. B., Hoang, T., Henry, S. R., Knapp, H., Anaya, H. D., Gifford, A. L., et al. (2009). Evaluation of the sustainability of an intervention to increase HIV testing. Journal of General Internal Medicine,24, 1275–1280. https://doi.org/10.1007/s11606-009-1120-8.

  21. Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology,78, 1360–1380.

  22. Green, L. W., Ottoson, J. M., Garcia, C., & Hiatt, R. A. (2009). Diffusion theory and knowledge dissemination utilization, and integration in public health. Annual Review Public Health,30, 151–174. https://doi.org/10.1146/annurev.publhealth.031308.100049.

  23. Institute of Medicine, & Committee on Quality of Health Care in America. (2001). Crossing the Quality Chasm: A new health system for the 21st century. Washington, DC: National Academies Press.

  24. Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2004). Applied linear regression models (4th ed.). New York: McGraw-Hill Irwin.

  25. Long, J. C., Hibbert, P., & Braithwaite, J. (2016). Structuring successful collaboration: A longitudinal analysis of a translational research network. Implementation Science,11, 19. https://doi.org/10.1186/s13012-016-0381-y.

  26. Miech, E. J., Rattray, N. A., Flanagan, M. E., Damschroder, L., Schmid, A. A., & Damush, T. M. (2018). Inside help: An integrative review of champions in healthcare-related implementation. Sage Open Medicine,6, 20503128773261. https://doi.org/10.1177/2050312118773261.

  27. Onnela, J. P., Arbesman, S., Gonzalez, M. C., Barabasi, A. L., & Christakis, N. A. (2011). Geographic constraints on social network groups. PLoS ONE,6, e169939. https://doi.org/10.1371/journal.pone.0016939.

  28. Palinkas, L. A., Garcia, A. R., Aarons, G. A., Finno-Velasquez, M., Holloway, I. W., Mackie, T. I., …Chamberlain, P. (2016). Measuring use of research evidence: The structured interview for evidence use. Research on Social Work Practice, 26, 550–564.

  29. Palinkas, L. A., Holloway, I. W., Rice, E., Fuentes, D., Wu, Q., & Chamberlain, P. (2011). Social networks and implementation of evidence-based practices in public youth-serving systems: A mixed-methods study. Implementation Science,6, 113. https://doi.org/10.1186/1748-5908-6-113.

  30. Powell, B. J., Waltz, T. J., Chinman, M. J., Damschroder, L. J., Smith, J. L., Matthieu, M. M., …Kirchner, J. E. (2015). A refined compilation of implementation strategies: Results from the expert recommendations for implementing change (ERIC) project. Implementation Science, 10, 21. https://doi.org/10.1186/s13012-015-0209-1

  31. Proctor, E. K., Landsverk, J., Aarons, G., Chambers, D., Glisson, C., & Mittman, B. (2009). Implementation research in mental health services: an emerging science with conceptual, methodological and training challenges. Administration and Policy in Mental Health and Mental Health Services,36, 24–34. https://doi.org/10.1007/s10488-008-0197-4.

  32. Proctor, E. K., Powell, B. J., & McMillen, J. C. (2013). Implementation strategies: Recommendations for specifying and reporting. Implementation Science,8, 139. https://doi.org/10.1186/1748-5908-8-139.

  33. R Development Core Team. (2005). R: A language and environment for statistical computing. [computer software]. Vienna, Austria: R Foundation for Statistical Computing.

  34. Rice, E., Holloway, I. W., Barman-Adhikari, A., Fuentes, D., Brown, C. H., & Palinkas, L. A. (2014). A mixed methods approach to network data collection. Field Methods,26, 252–268.

  35. Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

  36. Rogers, A., Vassilev, I., Sanders, C., Kirk, S., Chew-Graham, C., Kennedy, A., … Richardson, G. (2011). Social networks, work and network-based resources for the management of long-term conditions: A framework and study protocol for developing self-care support. Implementation Science, 6, 56. https://doi.org/10.1186/1748-5908-6-56

  37. Sales, A. E., Estabrooks, C. A., & Valente, T. W. (2010). The impact of social networks on knowledge transfer in long-term care facilities: Protocol for a study. Implementation Science,5, 49. https://doi.org/10.1186/1748-5908-5-49.

  38. Schoenwald, S. K., & Hoagwood, K. (2001). Effectiveness, transportability, and dissemination of interventions: What matters when? Psychiatric Services,52, 1190–1197. https://doi.org/10.1176/appi.ps.52.9.1190.

  39. Sheather, S. (2009). A modern approach to regression with R. New York: Springer.

  40. Valente, T. W. (1995). Network model of the diffusion of innovations. Cresskill: Hampton Press.

  41. Valente, T. W. (2010). Social networks and health: Models, methods and applications. New York: Oxford University Press.

  42. Valente, T. W. (2012). Network interventions. Science,337, 49–53. https://doi.org/10.1126/science.1217330.

  43. Valente, T. W., Coronges, K. A., Stevens, G. D., & Cousineau, M. R. (2008). Collaboration and competition in a children’s health initiative coalition: A network analysis. Evaluation and Program Planning, 31, 392–402.

  44. Valente, T. W., & Davis, R. L. (1999). Accelerating the diffusion of innovations using opinion leaders. Annals of American Academy of Political and Social Science,556, 55–67.

  45. Valente, T. W., & Fujimoto, K. (2010). Bridging: Locating critical connectors in a network. Social Networks,32, 212–220.

  46. Valente, T. W., Palinkas, L. A., Czaja, S., Chu, K. H., & Brown, C. H. (2015). Social network analysis for program implementation. PLoS ONE,10, e0131712. https://doi.org/10.1371/journal.pone.0131712.

  47. Wattenberg, M. S., Unger, W. S., Foy, D. W., & Glynn, S. M. (2006). Present-centered supportive group therapy for trauma survivors. In L. A. Schein, H. I. Spitz, G. M. Burlingam, & P. R. Muskin (Eds.), Psychological effects of catastrophic disasters: Group approaches to treatment (pp. 731–786). New York: Haworth Press.

  48. Wensing, M., van der Eijk, M., Koetsenruijter, J., Bloem, B. R., Munneke, M., & Faber, M. (2011). Connectedness of healthcare professionals involved in the treatment of patients with Parkinson’s disease: A social networks study. Implementation Science,6, 67. https://doi.org/10.1186/1748-5908-6-67.

Download references

Author information

Correspondence to A. Rani Elwy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elwy, A.R., Kim, B., Plumb, D.N. et al. The Connectedness of Mental Health Providers Referring Patients to a Treatment Study for Post-Traumatic Stress: A Social Network Study. Adm Policy Ment Health (2019). https://doi.org/10.1007/s10488-019-00945-y

Download citation

Keywords

  • Social network analysis
  • Posttraumatic stress disorder
  • Mixed methods
  • Hybrid design
  • Veterans