Patient Preferences of a Low-Income Hispanic Population for Mental Health Services in Primary Care

  • Patricia M. Herman
  • Maia Ingram
  • Heather Rimas
  • Scott Carvajal
  • Charles E. Cunningham
Original Article


We used a discrete-choice conjoint experiment to model the mental health services preferences of patients of a federally-qualified health center serving a primarily low-income, Hispanic farmworker population in southwestern Arizona. The two attributes that had the largest influence on patient choices (i.e., received the highest importance scores) were where patients receive these services and the language and cultural awareness of the provider who prescribed their treatment. Simulations indicated that the clinic could substantially improve its patients’ welfare with even a single change. The single most effective change in terms of patient preferences would be to offer behavioral health services onsite.


Discrete choice experiment Conjoint analysis Patient preferences Mental health Hispanic 


  1. Allen, L. A., Escobar, J. I., Lehrer, P. M., Gara, M. A., & Woolfolk, R. L. (2002). Psychosocial treatments for multiple unexplained physical symptoms: A review of the literature. Psychosomatic Medicine, 64(6), 939–950.PubMedGoogle Scholar
  2. Allenby, G. M, Arora, N., & Ginter, J. L. (1995). Incorporating prior knowledge into the analysis of conjoint studies. Journal of Marketing Research, 32(2), 152–162.CrossRefGoogle Scholar
  3. Allenby, G., Fennell, G., Huber, J., Eagle, T., Gilbride, T., Horsky, D., & Ofek, E. (2005). Adjusting choice models to better predict market behavior. Marketing Letters, 16(3–4), 197–208.CrossRefGoogle Scholar
  4. Arcury, T. A., & Quandt, S. A. (2007). Delivery of health services to migrant and seasonal farmworkers. The Annual Review of Public Health, 28, 345–363.CrossRefPubMedGoogle Scholar
  5. Bao, Y., Casalino, L. P., & Pincus, H. A. (2013). Behavioral health and health care reform models: Patient-centered medical home, health home, and accountable care organization. The Journal of Behavioral Health Services & Research, 40(1), 121–132. doi:10.1007/s11414-012-9306-y.CrossRefGoogle Scholar
  6. Borowsky, S. J., Rubenstein, L. V., Meredith, L. S., Camp, P., Jackson-Triche, M., & Wells, K. B. (2000). Who is at risk of nondetection of mental health problems in primary care? Journal of General Internal Medicine, 15(6), 381–388.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bridges, J. F. (2003). Stated preference methods in health care evaluation: An emerging methodological paradigm in health economics. Applied Health Economics and Health Policy, 2(4), 213–224.PubMedGoogle Scholar
  8. Bridges, J. F. P., Hauber, A. B., Marshall, D., Lloyd, A., Prosser, L. A., Regier, D. A., & Mauskopf, J. (2011). Conjoint analysis applications in health—a checklist: A report of the ISPOR good research practices for conjoint analysis task force. Value in Health, 14(4), 403–413.CrossRefPubMedGoogle Scholar
  9. Bridges, J., Onukwugha, E., Johnson, F. R., & Hauber, A. B. (2007). Patient preference methods—a patient centered evaluation paradigm. ISPOR Connections, 13(6), 4–7.Google Scholar
  10. Caldwell, A., Couture, A., & Nowotny, H. (2008). Closing the mental health gap: Eliminating disparities in treatment for latinos. Kansas City, MO: Mattie Rhodes Center.Google Scholar
  11. Callahan, E. J., Bertakis, K. D., Azari, R., Robbins, J. A., Helms, L. J., & Leigh, J. P. (2002). Association of higher costs with symptoms and diagnosis of depression. Journal of Family Practice, 51(6), 540–545.PubMedGoogle Scholar
  12. Caruso, E. M., Rahnev, D. A., & Banaji, M. R. (2009). Using conjoint analysis to detect discrimination: Revealing covert preferences from overt choices. Social Cognition, 27(1), 128–137.CrossRefGoogle Scholar
  13. Carvajal, S. C., Rosales, C., Rubio-Goldsmith, R., Sabo, S., Ingram, M., McClelland, D. J., & O’Leary, A. O. (2013). The border community and immigration stress scale: A preliminary examination of a community responsive measure in two southwest samples. Journal of Immigrant and Minority Health, 15(2), 427–436.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Coyne, J. C., Thompson, R., Palmer, S. C., Kagee, A., & Maunsell, E. (2000). Should we screen for depression? Caveats and potential pitfalls. Applied and Preventive Psychology, 9(2), 101–121.CrossRefGoogle Scholar
  15. Cunningham, C. E., Deal, K., Rimas, H., Campbell, H., Russell, A., Henderson, J., & Melnick, B. (2008). Using conjoint analysis to model the preferences of different patient segments for attributes of patient-centered care. The Patient: Patient-Centered Outcomes Research, 1(4), 317–330.CrossRefGoogle Scholar
  16. Cunningham, C. E., Deal, K., Rimas, H., Chen, Y., Buchanan, D. H., & Sdao-Jarvie, K. (2009). Providing information to parents of children with mental health problems: A discrete choice conjoint analysis of professional preferences. Journal of Abnormal Child Psychology, 37(8), 1089–1102.CrossRefPubMedGoogle Scholar
  17. Dickinson, W. Perry., & Miller, B. F. (2010). Comprehensiveness and continuity of care and the inseparability of mental and behavioral health from the patient-centered medical home. Families, Systems, & Health, 28(4), 348–355. doi:10.1037/a0021866.CrossRefGoogle Scholar
  18. Dwight-Johnson, M., Lagomasino, I. T., Aisenberg, E., & Hay, J. (2004). Using conjoint analysis to assess depression treatment preferences among low-income Latinos. Psychiatric Services, 55(8), 934–936.CrossRefPubMedGoogle Scholar
  19. Escobar, J. I., Waitzkin, H., Silver, R. C., Gara, M., & Holman, A. (1998). Abridged somatization: A study in primary care. Psychosomatic Medicine, 60(4), 466–472.CrossRefPubMedGoogle Scholar
  20. Fraenkel, L., Gulanski, B., & Wittink, D. (2006). Patient treatment preferences for osteoporosis. Arthritis Care & Research, 55(5), 729–735.CrossRefGoogle Scholar
  21. General, S. (2001). Mental health: Culture, race, ethnicity, supplement to mental health: Report of the surgeon general. Washington, DC: US Department of Health and Human Services.Google Scholar
  22. Hedrick, S. C., Chaney, E. F., Felker, B., Liu, C.-F., Hasenberg, N., Heagerty, P., & Paden, G. (2003). Effectiveness of collaborative care depression treatment in Veterans’ Affairs primary care. Journal of General Internal Medicine, 18(1), 9–16.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hovey, J. D., & Seligman, L. D. (2006). The mental health of agricultural workers. In J. E. Lessenger (Ed.), Agricultural Medicine(pp. 282–299). New York: Springer.CrossRefGoogle Scholar
  24. Hsee, C. K., Loewenstein, G. F., Blount, S., & Bazerman, M. H. (1999). Preference reversals between joint and separate evaluations of options: A review and theoretical analysis. Psychological Bulletin, 125(5), 576.CrossRefGoogle Scholar
  25. Huber, J., Orme, B. K., & Miller, R. (2007). Dealing with product similarity in conjoint simulations. In A. Gustafsson, A. Herrmann, & F. Huber (Eds.), Conjoint measurement: Methods and applications (4th ed., pp. 347–362). New York: Springer.CrossRefGoogle Scholar
  26. Hui, M. K, & Bateson, J. E. G. (1991). Perceived control and the effects of crowding and consumer choice on the service experience. Journal of Consumer Research, 18(2), 174–184.CrossRefGoogle Scholar
  27. Ingram, M., Murrietta, L., Gall, A. J., Herman, P. M., De Zapien, J. G., & Carvajal, S. C. (2015). CHWs as focus group facilitators: A participatory action research method to improve behavioral health services for farmworkers in a primary care setting. Action Research Journal 13(1), 48–64.Google Scholar
  28. Ingram, M., Schachter, K. A., Guernsey de Zapien, J., Herman, P. M., & Carvajal, S. C. (2014). Using participatory methods to enhance patient‐centred mental health care in a federally qualified community health center serving a Mexican American farmworker community. Health Expectations. doi:10.1111/hex.12284.PubMedGoogle Scholar
  29. Katon, W. (1995). Will improving detection of depression in primary care lead to improved depressive outcomes? General Hospital Psychiatry, 17(1), 1–2.CrossRefPubMedGoogle Scholar
  30. Katon, W. J., Roy-Byrne, P., Russo, J., & Cowley, D. (2002). Cost-effectiveness and cost offset of a collaborative care intervention for primary care patients with panic disorder. Archives of General Psychiatry, 59(12), 1098–1104.CrossRefPubMedGoogle Scholar
  31. Kessler, R., & Stafford, D. (2008). Primary care is the de facto mental health system. New York: Springer.CrossRefGoogle Scholar
  32. Koizumi, N., Rothbard, A. B., & Kuno, E. (2009). Distance matters in choice of mental health program: Policy implications for reducing racial disparities in public mental health care. Administration and Policy in Mental Health and Mental Health Services Research, 36(6), 424–431.CrossRefPubMedGoogle Scholar
  33. Lancsar, E., & Louviere, J. (2008). Conducting discrete choice experiments to inform healthcare decision making. Pharmacoeconomics, 26(8), 661–677.CrossRefPubMedGoogle Scholar
  34. Lenk, P. J., DeSarbo, W. S., Green, P. E., & Young, M. R. (1996). Hierarchical Bayes conjoint analysis: Recovery of partworth heterogeneity from reduced experimental designs. Marketing Science, 15(2), 173–191.CrossRefGoogle Scholar
  35. Marshall, D., Bridges, J. F., Hauber, B., Cameron, R., Donnalley, L., Fyie, K., & Johnson, F. R. (2010). Conjoint analysis applications in health—how are studies being designed and reported? The Patient: Patient-Centered Outcomes Research, 3(4), 249–256.CrossRefGoogle Scholar
  36. Miranda, J., & Cooper, L. A. (2004). Disparities in care for depression among primary care patients. Journal of General Internal Medicine, 19(2), 120–126.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Orme, B. K. (2009). SSI web V6.6 software for web interviewing and conjoint analysis. Sequim: Sawtooth Software.Google Scholar
  38. Orme, B. K. (2010). Getting started with conjoint analysis: Strategies for product design and pricing research (2nd ed.). Madison, WI: Research Publishers.Google Scholar
  39. Orme, B., & Huber, J. (2000). Improving the value of conjoint simulations. Marketing Research, 12(4), 12–20.Google Scholar
  40. Payne, J., Bettman, J., & Johnson, E. (1993). The adaptive decision maker. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  41. Phillips, K. A., Johnson, F. R., & Maddala, T. (2002). Measuring what people value: A comparison of “attitude” and “preference” surveys. Health Services Research, 37(6), 1659–1679.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Raine, R., Haines, A., Sensky, T., Hutchings, A., Larkin, K., & Black, N. (2002). Systematic review of mental health interventions for patients with common somatic symptoms: Can research evidence from secondary care be extrapolated to primary care? BMJ, 325(7372), 1082.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Regier, D. A., Narrow, W. E., Rae, D. S., Manderscheid, R. W., Locke, B. Z., & Goodwin, F. K. (1993). The de facto US mental and addictive disorders service system: Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Archives of General Psychiatry, 50(2), 85–94.CrossRefPubMedGoogle Scholar
  44. Renzaho, A. M. N., Romios, P., Crock, C., & Sønderlund, A. L. (2013). The effectiveness of cultural competence programs in ethnic minority patient-centered health care—a systematic review of the literature. International Journal for Quality in Health Care, 25(3), 261–269. doi:10.1093/intqhc/mzt006.CrossRefPubMedGoogle Scholar
  45. Rios-Ellis, B. (2005). Critical disparities in Latino mental health: Transforming research into action. White Paper. Washington, DC: Institute for Hispanic Health, National Council of La Raza.Google Scholar
  46. Rosenthal, E. L., Wiggins, N., Ingram, M., Mayfield-Johnson, S., & De Zapien, J. G. (2011). Community health workers then and now: An overview of national studies aimed at defining the field. Journal of Ambulatory Care Management, 34, 247–259.CrossRefPubMedGoogle Scholar
  47. Rost, K., Pyne, J. M., Dickinson, L. M., & LoSasso, A. T. (2005). Cost-effectiveness of enhancing primary care depression management on an ongoing basis. The Annals of Family Medicine, 3(1), 7–14.CrossRefPubMedGoogle Scholar
  48. Ryan, M., & Farrar, S. (2000). Using conjoint analysis to elicit preferences for health care. British Medical Journal, 320(7248), 1530.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ryan, M., Scott, D. A., Reeves, C., Bate, A., Van Teijlingen, E. R., Russell, E. M., & Robb, C. M. (2001). Eliciting public preferences for healthcare: A systematic review of techniques. Health Technology Assessment , 5(5), 1–186.CrossRefPubMedGoogle Scholar
  50. Sawtooth Software, Inc. (2009). The CBC/HB system for hierarchical Bayes estimation version 5.0 technical paper Sawtooth Software Technical Paper Series 131. Sequim, WA.Google Scholar
  51. Sawtooth Software. CBC/Web Tutorial and Example. Retrieved March 10, 2015.
  52. Scholle, S. H., Haskett, R. F., Hanusa, B. H., Pincus, H. A., & Kupfer, D. J. (2003). Addressing depression in obstetrics/gynecology practice. General Hospital Psychiatry, 25(2), 83–90.CrossRefPubMedGoogle Scholar
  53. Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An effort-reduction framework. Psychological Bulletin, 134(2), 207.CrossRefPubMedGoogle Scholar
  54. Smith, G. R., Rost, K., & Kashner, T. M. (1995). A trial of the effect of a standardized psychiatric consultation on health outcomes and costs in somatizing patients. Archives of General Psychiatry, 52(3), 238–243.CrossRefPubMedGoogle Scholar
  55. Software, S. (2008). The CBC advanced design module technical paper sawtooth software technical paper series 1-31. Sequim, WA: Sawtooth Software Inc.Google Scholar
  56. Sorel, E., & Everett, A. (2011). Psychiatry and primary care integration: Challenges and opportunities. International Review of Psychiatry, 23(1), 28–30. doi:10.3109/09540261.2010.549117.CrossRefPubMedGoogle Scholar
  57. Van Berckelaer, A., DiRocco, D., Ferguson, M., Gray, P., Marcus, N., & Day, S. (2012). Building a patient-centered medical home: Obtaining the patient’s voice. The Journal of the American Board of Family Medicine, 25(2), 192–198. doi:10.3122/jabfm.2012.02.100235.CrossRefPubMedGoogle Scholar
  58. Verlegh, P. W., Schifferstein, H. N., & Wittink, D. R. (2002). Range and number-of-levels effects in derived and stated measures of attribute importance. Marketing Letters, 13(1), 41–52.CrossRefGoogle Scholar
  59. Wang, P. S., Demler, O., & Kessler, R. C. (2002). Adequacy of treatment for serious mental illness in the United States. American Journal of Public Health, 92, 92–98.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wang, P. S., Lane, M., Olfson, M., Pincus, H. A., Wells, K. B., & Kessler, R. C. (2005). Twelve-month use of mental health services in the United States: Results from the national comorbidity survey replication. Archives of General Psychiatry, 62(6), 629–640.CrossRefPubMedGoogle Scholar
  61. Watkins, K., Pincus, H. A., & Tanielian, T. L. (2001). Evidence-based care models for recognizing and treating alcohol problems in primary care. Santa Monica, CA: RAND Corporation.Google Scholar
  62. Williams, J., Palmes, G., Klinepeter, K., Pulley, A., & Foy, J. M. (2005). Referral by pediatricians of children with behavioral health disorders. Clinical Pediatrics, 44(4), 343–349.CrossRefPubMedGoogle Scholar
  63. Wittink, M. N., Cary, M., TenHave, T., Baron, J., & Gallo, J. J. (2010). Towards patient-centered care for depression. The Patient: Patient-Centered Outcomes Research, 3(3), 145–157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Patricia M. Herman
    • 1
  • Maia Ingram
    • 2
  • Heather Rimas
    • 3
  • Scott Carvajal
    • 4
  • Charles E. Cunningham
    • 5
  1. 1.RAND CorporationSanta MonicaUSA
  2. 2.Arizona Prevention Research Center, Mel & Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonUSA
  3. 3.Department of Psychiatry and Behavioral NeurosciencesMcMaster UniversityHamiltonCanada
  4. 4.Health Promotion Sciences, Arizona Prevention Research Center Mel & Enid Zuckerman College of Public HealthUniversity of ArizonaTucsonUSA
  5. 5.Department of Psychiatry and Behavioural Neurosciences, Jack Laidlaw Chair in Patient-Centered Health Care, Faculty of Health Sciences, Michael G. DeGroote School of MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations