Predictors of Workforce Turnover in a Transported Treatment Program

  • Ashli J. Sheidow
  • Sonja K. Schoenwald
  • H. Ryan Wagner
  • Charlene A. Allred
  • Barbara J. Burns
Original Paper

Abstract

This study examined relations between workforce turnover and select clinician (demographic and professional characteristics and perceptions of treatment model features and job requirements) organizational (perceptions of organizational climate and structure) and program level (salary, case mix) variables in a sample of 453 clinicians across 45 organizations participating in a transportability study of an empirically supported adolescent treatment (i.e., MST). At 20% annually, turnover was lower than in the national mental health workforce (i.e., 50–60%). Clinician demographic, professional background, and perceptions of the treatment model and demands did not predict turnover. Perceptions of an emotionally demanding organizational climate, program salary level, and program case mix of youth did predict turnover.

Keywords

Transported treatment Dissemination Evidence-based treatment Empirically supported treatment Workforce turnover 

References

  1. Ben-Dror, R. (1994). Employee turnover in community mental health organization: A developmental stages study. Community Mental Health Journal, 30, 243–257.PubMedCrossRefGoogle Scholar
  2. Blankertz, L. E., & Robinson, S. E. (1997). Turnover intentions of community mental health workers in psychosocial rehabilitation services. Community Mental Health Journal, 33, 517–529.PubMedCrossRefGoogle Scholar
  3. Chamberlain, P. (2003). The Oregon Multidimensional Treatment Foster Care model: Features, outcomes, and progress in dissemination. Cognitive and Behavioral Practice, 10(4), 303–312.CrossRefGoogle Scholar
  4. Corrigan, P. W., Steiner, L., McCracken, S. G., Blaser, B., & Barr, M. (2001). Strategies for disseminating evidence-based practices to staff who treat people with serious mental illness. Psychiatric Services, 52(12), 1598–1606.PubMedCrossRefGoogle Scholar
  5. Fals-Stewart, W., Logsdon, T., & Birchler, G. R. (2004). Diffusion of an Empirically Supported Treatment for Substance Abuse: An Organizational Autopsy of Technology Transfer Success and Failure. Clinical Psychology: Science & Practice, 11(2), 177–182.CrossRefGoogle Scholar
  6. Geurts, S., Schaufeli, W., & De Jonge, J. (1998). Burnout and intention to leave among mental health-care professionals: A social psychological approach. Journal of Social & Clinical Psychology, 17(3), 341–362.Google Scholar
  7. Glisson, C. (2002). The Organizational Context of Children’s Mental Health Services. Clinical Child & Family Psychology Review, 5(4), 233–253.CrossRefGoogle Scholar
  8. Glisson, C., & Hemmelgarn, A. (1998). The effects of organizational climate and interorganizational coordination on the quality and outcomes of children’s service systems. Child Abuse & Neglect, 22(5), 401–421.CrossRefGoogle Scholar
  9. Hage, J., & Aiken, M. (1967). Relationship of centralization to other structural properties. Administrative Science Quarterly, 12, 73–92.Google Scholar
  10. Hall, R. H. (1963). The concept of bureaucracy: An empirical assessment. American Journal of Sociology, 69, 32–40.CrossRefGoogle Scholar
  11. Henggeler, S. W., & Schoenwald, S. K. (1999). The role of quality assurance in achieving outcomes in MST programs. Journal of Juvenile Justice and Detention Services, 14, 1–17.Google Scholar
  12. Henggeler, S. W., Schoenwald, S. K., Borduin, C. M., Rowland, M. D., & Cunningham, P. B. (1998). Multisystemic treatment of antisocial behavior in children and adolescents. Guilford Press: New York.Google Scholar
  13. Hoge, M. A., & Morris, J. A. (2002). Guest editors’ introduction. Administration and Policy in Mental Health, 29(4–5), 297–303.CrossRefGoogle Scholar
  14. Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability (Vol. 1, pp. 221–233). Berkeley: University of California Press.Google Scholar
  15. James, L. R., & Sells, S. B. (1981). Psychological climate: Theoretical perspectives and empirical research. In D. Magnussen (Ed.), The Situation: An Interactional Perspective, (pp. 275–295). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  16. Jinnett, K., & Alexander, J. A. (1999). The influence of organizational context on quitting intention: An examination of treatment staff in long-term mental health care settings. Research on Aging, 21(2), 176–204.CrossRefGoogle Scholar
  17. Kamis-Gould, E., & Staines, G. L. (1986). Manpower information and the community mental health system. Hospital & Community Psychiatry, 37(10), 1030–1034.Google Scholar
  18. Klein, K. J., & Knight, A. P. (2005). Innovation implementation: Overcoming the challenge. Current Directions in Psychological Science, 14, 243–246.CrossRefGoogle Scholar
  19. Maslach, C., & Jackson S.E. (1981). The measurement of experienced burnout. Journal of Occupational Behaviour 2, 99–113.CrossRefGoogle Scholar
  20. McLellan, A. T., Carise, D., & Kleber, H. D. (2003). Can the national addiction treatment infrastructure support the public’s demand for quality care? Journal of Substance Abuse Treatment, 25(2), 117–121.PubMedCrossRefGoogle Scholar
  21. Olds, D. L., Hill, P. L., O’Brien, R., Racine, D., & Moritz, P. (2003). Taking preventive intervention to scale: The nurse-family partnership. Cognitive and Behavioral Practice, 10(4), 278–290.CrossRefGoogle Scholar
  22. Parnes, H. S. (1954). Research on labor mobility: An appraisal of research findings in the United States. Social Science Research Council Bulletin, No. 65 1954, 205.Google Scholar
  23. President’s New Freedom Commission on Mental Health. (2003). Achieving the Promise: Transforming Mental Health Care in America.Google Scholar
  24. Rogers, E. M. (1995). Diffusion of innovations, (4 edn). New York: Free Press.Google Scholar
  25. Schoenwald, S. K. (1998). MST Personnel Data Inventory. Charleston, SC: Family Services Research Center.Google Scholar
  26. Schoenwald, S. K., Halliday-Boykins, C. A., & Henggeler, S. W. (2003). Client-level predictors of adherence to MST in community service settings. Family Process, 42(3), 345–359.PubMedCrossRefGoogle Scholar
  27. Schoenwald, S. K., Letourneau, E. J., & Halliday-Boykins, C. A. (2005). Predicting therapist adherence to a transported family-based treatment for youth. Journal of Clinical Child & Adolescent Psychology, 34(4), 658–670.CrossRefGoogle Scholar
  28. Schoenwald, S. K., Sheidow, A. J., & Letourneau, E. J. (2004). Toward effective quality assurance in evidence-based practice: Links between expert consultation, therapist fidelity, and child outcomes. Journal of Clinical Child & Adolescent Psychology, 33(1), 94–104.CrossRefGoogle Scholar
  29. Schoenwald, S. K., Sheidow, A. J., Letourneau, E. J., & Liao, J. G. (2003). Transportability of evidence-based treatments: Evidence for multi–level influences. Mental Health Services Research, 5(4), 223–239.PubMedCrossRefGoogle Scholar
  30. Sheidow, A. J., Henggeler, S. W., & Schoenwald, S. K. (2003). Multisystemic therapy. In T. L. Sexton, G. Weeks & M. Robbins (Eds.), Handbook of family therapy: Theory, research, and practice, (pp. 303–322). New York: Brunner-Routledge.Google Scholar
  31. Sheidow, A. J., Schoenwald, S. K., & Liao, J. G. (2002). Adaptation of organizational climate and structure scales for use with mental health treatment providers, (Tech. Rep.). Charleston: Medical University of South Carolina, Family Services Research Center.Google Scholar
  32. Shirom, A. (1989). Burnout in work organizations. In: C.L. Cooper & I.T. Robertson (Eds.), International review of industrial and organizational psychology, (pp. 25–48). Oxford, England: John Wiley.Google Scholar
  33. Sholomskas, D. E., Syracuse-Siewert, G., Rounsaville, B. J., Ball, S. A., Nuro, K. F., & Carroll, K. M. (2005). We don’t train in vain: A dissemination trial of three strategies of training clinicians in cognitive-behavioral therapy. Journal of Consulting and Clinical Psychology, 73(1), 106–115.PubMedCrossRefGoogle Scholar
  34. Siefert, K., Jayaratne, S., & Chess, W. A. (1991). Job satisfaction, burnout, and turnover in health care social workers. Health & Social Work, 16(3), 193–202.Google Scholar
  35. Tang, T. L. P., Kim, J. K., & Tang, D. S. H. (2000). Does attitude toward money moderate the relationship between intrinsic job satisfaction and voluntary turnover? Human Relations, 53(2), 213–245.Google Scholar
  36. Torrey, W. C., Drake, R. E., Dixon, L., Burns, B. J., Flynn, L., Rush, A. J., et al. (2001). Implementing evidence-based practices for persons with severe mental illnesses. Psychiatric Services, 52(1), 45–50.PubMedCrossRefGoogle Scholar
  37. Wright, T. A., & Cropanzano, R. (1998). Emotional exhaustion as a predictor of job performance and voluntary turnover. Journal of Applied Psychology, 83(3), 486–493.PubMedCrossRefGoogle Scholar
  38. Wykes, T., Stevens, W., & Everitt, B. (1997). Stress in community care teams: Will it affect the sustainability of community care?. Social Psychiatry and Psychiatric Epidemiology, 32(7), 398–407.PubMedGoogle Scholar
  39. Zohar, D. (1997). Predicting burnout with a hassle-based measure of role demands. Journal of Organizational Behavior, 18(2), 101–115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Ashli J. Sheidow
    • 1
  • Sonja K. Schoenwald
    • 1
  • H. Ryan Wagner
    • 2
  • Charlene A. Allred
    • 3
  • Barbara J. Burns
    • 4
  1. 1.Family Services Research Center, Department of Psychiatry and Behavioral SciencesMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamUSA
  3. 3.Department of Psychiatry and Behavioral SciencesDuke University School of Medicine AND Research Scientist, Center for Child & Family Policy, Terry Sanford Institute for Public Policy, Duke UniversityDurhamUSA
  4. 4.Services Effectiveness Research Program, Department of Psychiatry and Behavioral SciencesDuke University School of MedicineDurhamUSA

Personalised recommendations