Skip to main content
Log in

Gabriel–Ulmer Duality for Topoi and its Relation with Site Presentations

  • Published:
Applied Categorical Structures Aims and scope Submit manuscript

Abstract

Let \(\kappa \) be a regular cardinal. We study Gabriel–Ulmer duality when one restricts the 2-category of locally \(\kappa \)-presentable categories with \(\kappa \)-accessible right adjoints to its locally full sub-2-category of \(\kappa \)-presentable Grothendieck topoi with geometric \(\kappa \)-accessible morphisms. In particular, we provide a full understanding of the locally full sub-2-category of the 2-category of \(\kappa \)-small cocomplete categories with \(\kappa \)-small colimit preserving functors arising as the corresponding 2-category of presentations via the restriction. We analyse the relation of these presentations of Grothendieck topoi with site presentations and we show that the 2-category of locally \(\kappa \)-presentable Grothendieck topoi with geometric \(\kappa \)-accessible morphisms is a reflective sub-bicategory of the 2-category of weakly \(\kappa \)-ary sites [in the sense of Shulman (Theory Appl Categ 27:97–173, 2012)] with morphisms of sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Observe that the passage to the conjugate category \(\mathsf {Rex}^{\text {co}}\) is needed just because \( [\mathsf {C}^{\circ },\mathsf {D}^{\circ }] \cong [\mathsf {C},\mathsf {D}]^{\circ }\).

  2. Observe that actually more is true. If \(\kappa > \aleph _0\) the equivalence holds for every category \(\mathsf {I}\) with cardinality smaller than \(\kappa \). Nonetheless, for our purposes is enough to consider \(\mathsf {I}\) with a finite set of objects.

References

  1. Artin, D.M., Grothendieck, A., Verdier, J.L., Avec la collaboration de Bourbaki, N., Deligne, P., Saint-Donat, B., et al.: Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathematics, vol. 269, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Springer, Berlin, New York (1972)

  2. Adámek, J., Borceux, F., Lack, S., Rosický, J.: A classification of accessible categories. J. Pure Appl. Algebra 175(1–3), 7–30 (2002). Special volume celebrating the 70th birthday of Professor Max Kelly

  3. Adámek, J., Porst, H.-E.: Algebraic theories of quasivarieties. J. Algebra 208(2), 379–398 (1998)

    Article  MathSciNet  Google Scholar 

  4. Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories. London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)

  5. Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of elliptic curves. In: The Grothendieck Festschrift, vol. I, vol. 86 of Progr. Math., pp. 33–85. Birkhäuser Boston, Boston, MA (1990)

  6. Artin, M., Zhang, J.J.: Noncommutative projective schemes. Adv. Math. 109(2), 228–287 (1994)

    Article  MathSciNet  Google Scholar 

  7. Borceux, F.: Handbook of categorical algebra. In: 3, vol. 52 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge. Categories of sheaves (1994)

  8. Borceux, F., Pedicchio, M.C.: Left exact presheaves on a small pretopos. J. Pure Appl. Algebra 135(1), 9–22 (1999)

    Article  MathSciNet  Google Scholar 

  9. Borceux, F., Quinteiro, C.: A theory of enriched sheaves. Cahiers Topologie Géom. Différentielle Catég. 37(2), 145–162 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Breitsprecher, S.: Lokal endlich präsentierbare Grothendieck–Kategorien. Mitt. Math. Sem. Giessen Heft 85, 1–25 (1970)

    MathSciNet  MATH  Google Scholar 

  11. Caramello, O.: Theories, sites, toposes. Oxford University Press, Oxford, 2018. Relating and studying mathematical theories through topos-theoretic ‘bridges’ (2018)

  12. Carboni, A., Pedicchio, M.C., Rosický, J.: Syntactic characterizations of various classes of locally presentable categories. J. Pure Appl. Algebra 161(1–2), 65–90 (2001)

    Article  MathSciNet  Google Scholar 

  13. Carboni, A., Vitale, E.M.: Regular and exact completions. J. Pure Appl. Algebra 125(1–3), 79–116 (1998)

    Article  MathSciNet  Google Scholar 

  14. Centazzo, C., Vitale, E.M.: A duality relative to a limit doctrine. Theory Appl. Categ. 10(20), 486–497 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Coste, M.: Une approche logique des théories définissables par limites projectives finies. Séminaire Bénabou. Université Paris-Nord, (300), (1976)

  16. Di Liberti, I., Loregian, F.: Accessibility and presentability in 2-categories. arXiv e-prints arXiv:1804.08710 (2018)

  17. Elkins, B., Zilber, J.A.: Categories of actions and Morita equivalence. Rocky Mt. J. Math. 6(2), 199–225 (1976)

    Article  MathSciNet  Google Scholar 

  18. Freyd, P.: Cartesian logic. Theoret. Comput. Sci. 278(1–2), 3–21 (2002). Mathematical foundations of programming semantics (Boulder, CO, 1996)

  19. Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, vol. 221. Springer, Berlin, New York (1971)

  20. Garner, R., Lack, S.: Lex colimits. J. Pure Appl. Algebra 216(6), 1372–1396 (2012)

    Article  MathSciNet  Google Scholar 

  21. Isbell, J.R.: General functorial semantics. I. Am. J. Math. 94, 535–596 (1972)

    Article  MathSciNet  Google Scholar 

  22. Johnstone, P.T.: Sketches of an elephant: a topos theory compendium. Vol. 1, vol. 43 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, New York (2002)

  23. Johnstone, P.T.: Sketches of an elephant: a topos theory compendium. Vol. 2, vol. 44 of Oxford Logic Guides. The Clarendon Press, Oxford University Press, Oxford (2002)

  24. Kelly, G.M.: Basic concepts of enriched category theory. Repr. Theory Appl. Categ. (10):vi+137 (2005). Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714]

  25. Kock, A., Moerdijk, I.: Presentations of étendues. Cahiers Topologie Géom. Différentielle Catég. 32(2), 145–164 (1991)

    MathSciNet  MATH  Google Scholar 

  26. Lack, S., Power, J.: Gabriel–Ulmer duality and Lawvere theories enriched over a general base. J. Funct. Progr. 19(3–4), 265–286 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lester, C.: Covers in the canonical grothendieck topology. arXiv e-prints arXiv:1804.08710 (2019)

  28. Low, Z.: Categories of Spaces Built from Local Models. PhD thesis, University of Cambridge (2016)

  29. Lowen, W.: A generalization of the Gabriel–Popescu theorem. J. Pure Appl. Algebra 190(1–3), 197–211 (2004)

    Article  MathSciNet  Google Scholar 

  30. Lowen, W., Ramos González, J., Shoikhet, B.: On the tensor product of linear sites and Grothendieck categories. Int. Math. Res. Not. IMRN 21, 6698–6736 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lurie, J.: Ultracategories. http://www.math.harvard.edu/~lurie/papers/Conceptual.pdf. Accessed 4 July 2019

  32. Makkai, M.: Strong conceptual completeness for first-order logic. Ann. Pure Appl. Logic 40(2), 167–215 (1988)

    Article  MathSciNet  Google Scholar 

  33. Makkai, M., Paré, R.: Accessible categories: the foundations of categorical model theory. In: Contemporary Mathematics, vol. 104. American Mathematical Society, Providence, RI (1989)

  34. Makkai, M., Pitts, A.M.: Some results on locally finitely presentable categories. Trans. Am. Math. Soc. 299(2), 473–496 (1987)

    Article  MathSciNet  Google Scholar 

  35. Pronk, D.A.: Etendues and stacks as bicategories of fractions. Compos. Math. 102(3), 243–303 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Ramos González, J.: Grothendieck categories as a bilocalization of linear sites. Appl. Categ. Struct. 26(4), 717–745 (2018)

    Article  MathSciNet  Google Scholar 

  37. Rump, W.: Locally finitely presented categories of sheaves. J. Pure Appl. Algebra 214(2), 177–186 (2010)

    Article  MathSciNet  Google Scholar 

  38. Shulman, M.: Exact completions and small sheaves. Theory Appl. Categ. 27, 97–173 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Stacks Project authors. The stacks project. https://stacks.math.columbia.edu (2018). Accessed 4 July 2019

  40. Stafford, J.T., Van den Bergh, M.: Noncommutative curves and noncommutative surfaces. Bull. Am. Math. Soc. (N.S.) 38(2), 171–216 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the organisers of the summer school and conference Toposes in Como (Universitá degli Studi dell’Insubria - Como, June 2018) during which the initial discussions that led to this paper took place. We would also like to thank an anonymous referee for the useful comments. The first author is also indebted with Jiří Rosický for pointing out some very useful references. The second author would like to thank Jens Hemelaer for very interesting discussions on topos theory and in particular for his help in fully understanding the embedding \({\text {Ind}}_{\kappa }(\mathsf {C}) \rightarrow \mathsf {C}^{\circ }\)-\({\text {Alg}}\), which appears in the proof of Lemma 3.7. She is also grateful to Wendy Lowen for the reading of this manuscript and for her useful suggestions, as well as for pointing out reference [10]. Finally, she would like to thank the organisers of the Séminaire de théorie des catégories (Université catholique de Louvain, Université libre de Bruxelles and Vrije Universiteit Brussel) for giving her the opportunity to present this work during the seminar, which resulted in an improvement of the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Ramos González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

I. Di Liberti: The first named author is supported by the grant 19-00902S from the Grant Agency of the Czech Republic. J. Ramos González: The second named author is a Postdoctoral Fellow of the Research Foundation - Flanders (FWO) under Grant No. 12T2619N and acknowledges the support of the Research Foundation - Flanders (FWO) under Grant No. G.0D86.16N during the first months of working on this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Liberti, I., Ramos González, J. Gabriel–Ulmer Duality for Topoi and its Relation with Site Presentations. Appl Categor Struct 28, 935–962 (2020). https://doi.org/10.1007/s10485-020-09605-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10485-020-09605-x

Keywords

Navigation