Advertisement

Dynamical Systems and Sheaves

  • Patrick Schultz
  • David I. Spivak
  • Christina VasilakopoulouEmail author
Article
  • 9 Downloads

Abstract

A categorical framework for modeling and analyzing systems in a broad sense is proposed. These systems should be thought of as ‘machines’ with inputs and outputs, carrying some sort of signal that occurs through some notion of time. Special cases include continuous and discrete dynamical systems (e.g. Moore machines). Additionally, morphisms between the different types of systems allow their translation in a common framework. A central goal is to understand the systems that result from arbitrary interconnection of component subsystems, possibly of different types, as well as establish conditions that ensure totality and determinism compositionally. The fundamental categorical tools used here include lax monoidal functors, which provide a language of compositionality, as well as sheaf theory, which flexibly captures the crucial notion of time.

Keywords

Dynamical systems Topos theory Sheaf theory Monoidal categories Operads 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We greatly appreciate our collaboration with Alberto Speranzon and Srivatsan Varadarajan, who have helped us to understand how the ideas presented here can be applied in practice (specifically for modeling the National Airspace System) and who provided motivating examples with which to test and often augment the theory. We also thank the anonymous reviewers for valuable suggestions; in particular, such a suggestion led to a more abstract formalism of system algebras, explained in Section 2.4.

References

  1. 1.
    Abramsky, S., Blute, R., Panangaden, P.: Nuclear and trace ideals in tensored \(\ast \)-categories. J. Pure Appl. Algebra, 143(1–3), 3–47 (1999) (special volume on the occasion of the 60th birthday of Professor Michael Barr (Montreal, QC, 1997))Google Scholar
  2. 2.
    Adámek, J., Borceux, F., Lack, S., Rosický, J.: A classification of accessible categories. J. Pure Appl. Algebra 175(1–3), 7–30 (2002) (special volume celebrating the 70th birthday of Professor Max Kelly)Google Scholar
  3. 3.
    Ageron, P.: Effective taxonomies and crossed taxonomies. Cahiers Topologie Géom. Différentielle Catég. 37(2), 82–90 (1996)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Barr, M.: Exact categories. In: Exact Categories and Categories of Sheaves, vol. 236, pp. 1–120. Springer, Berlin, Heidelberg (1971).  https://doi.org/10.1007/BFb0058579 CrossRefzbMATHGoogle Scholar
  5. 5.
    Berger, C.: A cellular nerve for higher categories. Adv. Math. 169, 118–175 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berger, C., Melliès, P.-A., Weber, M.: Monads with arities and their associated theories. J. Pure Appl. Algebra 216(8), 2029–2048 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bunge, M., Fiore, M.P.: Unique factorisation lifting functors and categories of linearly-controlled processes. Math. Struct. Comput. Sci. 10(2), 137–163 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Day, B., Street, R.: Monoidal bicategories and Hopf algebroids. Adv. Math. 129(1), 99–157 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De Paiva, V.C.V.: The Dialectica Categories. Ph.D. thesis, University of Cambridge, UK (1990)Google Scholar
  10. 10.
    Fiore, M.P.: Fibred models of processes: discrete, continuous, and hybrid systems. In: Proceedings of the International Conference IFIP on Theoretical Computer Science, Exploring New Frontiers of Theoretical Informatics, TCS ’00, pp. 457–473. Springer, Berlin (2000)Google Scholar
  11. 11.
    Fong, B., Spivak, D.: Hypergraph Categories. arXiv:1806.08304 [math.CT] (2018)
  12. 12.
    Fong, B.: The Algebra of Open and Interconnected Systems. Ph.D. thesis, University of Oxford (2016)Google Scholar
  13. 13.
    Hedges, J.: Morphisms of open games. Electron. Notes Theor. Comput. Sci. 341, 151–177 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Hermida, C.: Representable multicategories. Adv. Math. 151(2), 164–225 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jacobs, B.: Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics, vol. 141. North-Holland Publishing Co., Amsterdam (1999)Google Scholar
  16. 16.
    Johnstone, P.: A note on discrete Conduché fibrations. Theory Appl. Categ. 5(1), 1–11 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Johnstone, P.T.: Sketches of an Elephant: A Topos Theory Compendium, Volume 43 of Oxford Logic Guides. The Clarendon Press, New York (2002)zbMATHGoogle Scholar
  18. 18.
    Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Computat. 127(2), 164–185 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb. Philos. Soc. 119(3), 447–468 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Katis, P., Sabadini, N., Walters, R.F.C.: On the algebra of systems with feedback and boundary. Rendiconti del Circolo Matematico di Palermo Serie II(63), 123–156 (2000)zbMATHGoogle Scholar
  22. 22.
    Kock, J.: Polynomial functors and trees. Int. Math. Res. Not. 2011(3), 609–673 (2011)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Lambek, J.: Deductive systems and categories. II. Standard constructions and closed categories. In: Category Theory, Homology Theory and their Applications, I (Battelle Institute Conference, Seattle, Wash., 1968, Vol. 1), pp. 76–122. Springer, Berlin (1969)Google Scholar
  24. 24.
    Lawvere, F.W.: State categories and response functors. Unpublished manuscript (1986)Google Scholar
  25. 25.
    Lee, Edward A., Seshia, Sanjit A.: Introduction to Embedded Systems, A Cyber-Physical Systems Approach, 2nd edn. MIT Press, Cambridge (2017)zbMATHGoogle Scholar
  26. 26.
    Leinster, T.: Nerves of algebras. Talk at CT04, Vancouver (2004)Google Scholar
  27. 27.
    Leinster, T.: Higher Operads, Higher Categories. Number 298 in London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  28. 28.
    Markl, M., Merkulov, S., Shadrin, S.: Wheeled props, graph complexes and the master equation. J. Pure Appl. Algebra 213(4), 496–535 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Milner, R.: Calculi for interaction. Acta Inform. 33(8), 707–737 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Moeller, J., Vasilakopoulou, C.: Monoidal grothendieck construction. arXiv:1809.00727 (2018)
  31. 31.
    Rupel, D., Spivak, D.I.: The operad of temporal wiring diagrams: formalizing a graphical language for discrete-time processes CoRR. arxiv:1307.6894 (2013)
  32. 32.
    Schultz, P., Spivak, D.I.: Temporal type theory: a topos-theoretic approach to systems and behavior. In: Progress in computer science and applied logic, vol. 29, p. 235. Birkhäuser Basel (2019).  https://doi.org/10.1007/978-3-030-00704-1 (2017)
  33. 33.
    Selinger, P.: First-order axioms for asynchrony. In: International Conference on Concurrency Theory, pp. 376–390. Springer (1997)Google Scholar
  34. 34.
    Spivak, D.I., Schultz, P., Rupel, D.: String diagrams for traced and compact categories are oriented 1-cobordisms. J Pure Appl Algebra. 221(8), 2064–2110 (2017).  https://doi.org/10.1016/j.jpaa.2016.10.009 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Spivak, D.I.: The operad of wiring diagrams: formalizing a graphical language for databases, recursion, and plug-and-play circuits. CoRR, arXiv:1305.0297 (2013)
  36. 36.
    Spivak, D.I.: The steady states of coupled dynamical systems compose according to matrix arithmetic. arXiv preprint: arXiv:1512.00802 (2015)
  37. 37.
    Stay, M.: Compact closed bicategories. Theory Appl. Categ. 31, 755–798 (2016)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Sztipanovits, J., Ying, S.: Strategic r&d opportunities for 21st century cyber-physical systems. Technical report, National Institute of Standards and Technology (2013)Google Scholar
  39. 39.
    Vagner, D., Spivak, D.I., Lerman, E.: Algebras of open dynamical systems on the operad of wiring diagrams. Theory Appl. Categ. 30(51), 1793–1822 (2015)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Weber, M.: Familial 2-functors and parametric right adjoints. Theory Appl. Categ. 18(22), 665–732 (2007)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Willems, J.C., Polderman, J.W.: Introduction to Mathematical Systems Theory: A Behavioral Approach, vol. 26. Springer, Berlin (2013)zbMATHGoogle Scholar
  42. 42.
    Winskel, G.: Event Structures, pp. 325–392. Springer, Berlin (1987)zbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Broad InstituteCambridgeUSA
  2. 2.Massachusetts Institute of TechnologyCambridgeUSA
  3. 3.University of CaliforniaRiversideUSA

Personalised recommendations